Cursos.unipampa.edu.br
FUNDAÇÃO UNIVERSIDADE FEDERAL DO PAMPA
PROGRAMA DE PÓS-GRADUAÇÃO EM BIOQUÍMICA
Angélica Aparecida da Costa Güllich
EFEITO DO TRATAMENTO COM NANOCÁPSULAS POLIMÉRICAS CONTENDO
CLOZAPINA SOBRE PARÂMETROS DE ESTRESSE OXIDATIVO EM RATOS
Dissertação de Mestrado
URUGUAIANA
ANGÉLICA APARECIDA DA COSTA GÜLLICH
EFEITO DO TRATAMENTO COM NANOCÁPSULAS POLIMÉRICAS
CONTENDO CLOZAPINA SOBRE PARÂMETROS DE ESTRESSE
OXIDATIVO EM RATOS WISTAR
Dissertação apresentada ao Programa de Pós-
Graduação
Stricto sensu em Bioquímica da
Fundação Universidade Federal do Pampa,
como requisito parcial para obtenção do Título
de Mestre em Bioquímica.
Orientadora: Prof.ª Dr.ª Vanusa Manfredini
Uruguaiana
Aos meus pais, Adão e Esmerilda, e à família Güllich pelo incentivo permanente, o amor e compreensão que recebo de vocês é o que me impulsiona a seguir em frente.
Agradeço a Deus, por Ele ter colocado as pessoas certas no momento certo, por sua proteção e
por estar sempre presente guiando e iluminando meu caminho.
Aos meus pais, por todo amor, apoio e incentivo, não tenho palavras para agradecer tudo o
que vocês já fizeram e ainda fazem por mim. Nunca mediram esforços, muitas vezes abrindo
mão dos seus sonhos para que os meus fossem realizados. Eu amo vocês!
A minha família Güllich, meus irmãos e irmãs, que mesmo longe estiveram sempre ao meu
lado me proporcionando muitos momentos de felicidade, pelo carinho, sempre acreditando em
mim! Obrigada por compreenderem a minha ausência. Amo vocês!
À Fundação Universidade Federal do Pampa (UNIPAMPA), em especial ao Programa de Pós-
Graduação em Bioquímica (PPGBIOQ) por esta oportunidade e suporte para desenvolver meu
projeto, bem como à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
(CAPES) pela bolsa de estudos.
À minha orientadora, Prof.ª Dr.ª Vanusa Manfredini, minha gratidão pelo tempo dedicado,
sugestões e compreensão. Agradeço a oportunidade de fazer parte do seu grupo de pesquisa e
por ter se colocado a disposição para realização deste trabalho. Sou grata ao apoio, confiança,
paciência, mas principalmente por ser mais que uma orientadora. Enfim, obrigada por tudo!
Ao Prof.º Dr.º Robson Luiz Puntel, agradeço pela oportunidade e pela orientação.
Sou grata aos colegas do Grupo de Estudos em Estresse Oxidativo (GESTOX), em especial à
Ritiéle que foi meu braço direito e esquerdo, Muriel, Juliana, Bruna, Deise e Leandro pela
amizade, colaboração e por proporcionarem dias memoráveis no laboratório, é muito bom
trabalhar com vocês.
As Prof.ª Dr.ª Jacqueline Piccoli, Fabiane Farias, Francielli Cibin, bem como as meninas do
Laboratório de Biotecnologia da Reprodução (BIOTECH) e do Grupo de Pesquisa em
Nanobiotecnologia e Nanotoxicologia, em especial Aryele Izaguirry e Simone Vieira, pela
colaboração na realização deste projeto.
Obrigada também aos demais professores do PPGBIOQ, que contribuíram de alguma forma
para minha formação.
Ao seu Antônio Guimarães, pelo auxílio com as lâminas histológicas.
Aos amigos, que fora do laboratório me acompanharam neste percurso, em especial
Alessandra Golke e Denise Feksa, agradeço as palavras de incentivo, ―Vai dar tudo certo!‖, e
também aos momentos de descontração que me impulsionavam a seguir em frente.
Aos membros da banca, as Prof.ª Dr.ª Melissa Schwanz e Sandra Elisa Haas, pela
disponibilidade e contribuição científica ao avaliarem este trabalho.
Enfim, agradeço a todos que de alguma forma contribuíram para a realização deste trabalho.
"Suba o primeiro degrau com fé.
Não é necessário que você veja toda a escada.
Apenas dê o primeiro passo."
Martin Luther King
Dissertação de Mestrado
Programa de Pós-Graduação em Bioquímica
Fundação Universidade Federal do Pampa
EFEITO DO TRATAMENTO COM NANOSSISTEMAS CONTENDO CLOZAPINA
SOBRE PARÂMETROS DE ESTRESSE OXIDATIVO EM RATOS WISTAR
Autora: Angélica Aparecida da Costa Güllich
Orientadora: Vanusa Manfredini
Local e Data da Defesa: Uruguaiana, 22 de Janeiro de 2014.
A clozapina é um antipsicótico de segunda geração, da família da dibenzodiazepina sendo o
tratamento de primeira escolha na esquizofrenia refratária, devido ao seu efeito marcante
sobre os sintomas positivos e negativos da doença. No entanto, seus efeitos adversos graves
limitam o uso na terapia clínica, como agranulocitose, cardiotoxicidade e hepatotoxicidade.
Em virtude dessas complicações torna-se necessário uma forma farmacêutica capaz de
vetorizar o fármaco para seu local de ação, reduzindo efeitos indesejáveis e minimizando o
estresse oxidativo, fazendo dos nanossistemas uma ferramenta promissora para este fim. O
objetivo desse trabalho foi verificar o efeito do tratamento com nanossistemas contendo
clozapina sobre parâmetros de estresse oxidativo em ratos Wistar. O estudo foi constituído de
oito grupos de ratos machos Wistar (n = 6), os animais receberam os seguintes tratamentos:
solução salina (NaCl 0,9% 1,0 mL/Kg i.p.), clozapina livre (25 mg/Kg i.p.), nanocápsulas
brancas sem revestimento (1,0 mL/Kg i.p.), nanocápsulas contendo clozapina sem
revestimento (25 mg/Kg i.p.), nanocápsulas brancas revestidas com quitosana ou
polietilenoglicol (1,0 mL/Kg i.p.), nanocápsulas contendo clozapina revestidas com quitosana
ou polietilenoglicol (25 mg/Kg i.p.). Os animais receberam as formulações uma vez ao dia
durante sete dias consecutivos, sendo eutanasiados no oitavo dia. Foram coletados sangue
total e os órgãos coração, fígado e rim para análises posteriores. A terapia com nanossistemas
contendo clozapina foi eficaz em manter os níveis hematológicos dentro da normalidade. A
quantificação dos marcadores enzimáticos para funções cardíaca, hepática e renal demonstrou
níveis séricos significativamente diminuídos (p < 0,05) quando comparado ao grupo clozapina
livre, ficando mais evidente a melhora clínica no grupo nanocápsulas contendo clozapina
revestidas com quitosana nos marcadores cardíacos e hepáticos. A análise histopatológica dos
órgãos mostrou que os diferentes nanossistemas contendo clozapina foram capazes de reduzir
danos teciduais. A atividade das enzimas antioxidantes catalase, superóxido dismutase e
glutationa peroxidase apresentou-se significativamente elevada nos grupos com diferentes
nanossistemas, assim como a atividade da glutationa reduzida, sendo do grupo nanocápsulas
contendo clozapina revestidas com quitosana os melhores resultados. Quanto ao dano
oxidativo em lipídios de membrana, proteínas plasmáticas e no material genético, a clozapina
livre induziu o dano enquanto que os diferentes nanossistemas contendo clozapina foram
capazes que reduzi-lo, sendo mais evidente no grupo nanocápsulas contendo clozapina
revestidas com polietilenoglicol. Logo, os achados demonstram que diferentes revestimentos
podem atuar de maneira diversificada e específica para cada órgão ou tecido pelo qual
possuem maior afinidade. A nanoencapsulação da clozapina é uma ferramenta terapêutica
promissora, capaz de atenuar os efeitos nocivos do fármaco, minimizando o estresse
oxidativo, tornando-a um fármaco mais seguro aos pacientes.
Palavras-chave: esquizofrenia, clozapina, nanossistemas, vias de estresse oxidativo.
ABSTRACT
Dissertation of Master's Degree
Program of Post-Graduation in Biochemistry
Federal University of Pampa
EFFECT OF TREATMENT WITH NANOSYSTEMS CONTAINING CLOZAPINE ON
OXIDATIVE STRESS PARAMETERS IN RATS WISTAR
Author: Angélica Aparecida da Costa Güllich
Advisor: Vanusa Manfredini
Date and Place of Defense: Uruguaiana, January 22, 2014
Clozapine is a second-generation antipsychotic, of family dibenzodiazepine being treatment
of first choice in refractory schizophrenia, owing outstanding effect about positive and
negative symptoms disease. However, severe adverse effects limit their use in clinical
therapy, such as agranulocytosis, hepatotoxicity and cardiotoxicity. In view these
complications became necessary a pharmaceutical form able to vectorize the drug its site of
action, reducing side effects and minimizing oxidative stress, making the nanosystems a
promising tool for this purpose. The aim this study was to investigate the effect of treatment
with nanosystems containing clozapine on oxidative stress parameters in Wistar rats. The
study consisted of eight groups of male Wistar rats (n = 6) animals received the following
treatments: saline solution (NaCl 0.9% 1.0 mL/Kg i.p.), free clozapine (25 mg/Kg i.p.), blank
uncoated nanocápsulas (1.0 mL/Kg i.p.), clozapine-loaded uncoated nanocapsules (25 mg/Kg
i.p.), blank chitosan-coated or polyethyleneglycol-coated nanocápsulas (1.0 mL/Kg i.p.),
clozapine-loaded chitosan-coated or polyethyleneglycol-coated nanocapsules (25 mg/Kg i.p.).
The animals received the formulation once a day for seven consecutive days and euthanized
in the eighth day. It was collected global blood and organs heart, liver and kidney for further
analysis. The nanosystems containing clozapine therapy was effective in maintaining blood
levels within the normal range. Quantification of biochemical markers for cardiac, hepatic and
renal function showed serum levels significantly decreased (p < 0.05) when compared free
clozapine group, becoming more evident clinical improvement in the clozapine-loaded
chitosan-coated nanocapsules group in the markers cardiac and hepatic. The histopathological
analysis of the organs showed that the different nanosystems containing clozapine were able
to reduce tissue damage. The activity of antioxidant enzymes catalase, superoxide dismutase
and glutathione peroxidase were significantly higher in the groups with different
nanosystems, such as the activity of reduced glutathione, being the clozapine-loaded chitosan-
coated nanocapsules group the best results. How to oxidative damage in membrane lipids,
plasma proteins and genetic material, the free clozapine induced damage while different
nanosystems containing clozapine were able to reduce, being more evident in the clozapine-
loaded polyethyleneglycol-coated nanocapsules. Thus, our findings suggest that different
coatings can act in diverse and specific way for each organ or tissue through which possess
higher affinity. The nanoencapsulation of clozapine is a promising therapeutic tool, able of
mitigating the harmful effects of drug, minimizing oxidative stress, making a safer drug to
patients.
Keywords: schizophrenia, clozapine, nanosystems, oxidative stress pathways.
LISTA DE FIGURAS
Figura 1 - Estrutura química da clozapina .
Figura 2 - Representação esquemática de nanocápsulas e nanoesferas poliméricas .
MANUSCRITO I
Figure 1 - Hematological parameters of red blood cells in Wistar rats exposed to
Figure 2 - Hematological parameters of white blood cells in Wistar rats exposed to
different nanosystems treatments ……….………………………………………….
Figure 3 - Hematological parameters of plaquets in Wistar rats exposed to different
Figure 4 - Markers cardiac function in Wistar rats exposed to different nanosystems
Figure 5 - Markers hepatic function in Wistar rats exposed to different nanosystems
Figure 6 - Markers renal function in Wistar rats exposed to different nanosystems
Figure 7 - Histopathological analysis of heart in Wistar rats exposed to different
Figure 8 - Histopathological analysis of liver in Wistar rats exposed to different
Figure 9 - Histopathological analysis of kidney in Wistar rats exposed to different
MANUSCRITO II
Figure 1 - Oxidative damage markers in Wistar rats exposed to different nanosystems
Figure 2 - Antioxidant defenses parameters in Wistar rats exposed to different
nanosystems treatments .
MANUSCRITO III
Figure 1 - Oxidative damage markers in brain in Wistar rats exposed to different
LISTA DE TABELAS
MANUSCRITO I
Table 1 - Values (mean ± SD) of particle mean diameter (D[4,3], nm), SPAM, zeta
potential (mV) and pH of clozapine nanoformulations (n = 3 batches) .
MANUSCRITO II
Table 1 - Values (mean ± SD) of particle mean diameter (D[4,3], nm), SPAM, zeta
potential (mV) and pH of clozapine nanoformulations (n = 3 batches) .
MANUSCRITO III
Table 1 - Values (mean ± SD) of particle mean diameter (D[4,3], nm), SPAM, zeta
potential (mV) and pH of clozapine nanoformulations (n = 3 batches) .
LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS
- Antipsicóticos de Primeira Geração
- Antipsicóticos de Segunda Geração
BIOTECH - Laboratório de Biotecnologia da Reprodução
- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- Ácido Desoxirribonucléico
- Esquizofrenia Refratária
- Espécies Reativas de Nitrogênio
- Espécies Reativas de Oxigênio
- Grupo de Estudos em Estresse Oxidativo
- Glutationa Peroxidase
- Glutationa Reduzida
- Peróxido de Hidrogênio
- Ácido Hipocloroso
- Óxido Nitroso
- Radical Óxido Nítrico
- Nanopartículas
- Organização Mundial de Saúde
- Oxigênio Singleto
- Radical Ânion Superóxido
- Radical Hidroxila
- Ânion Peroxinitrito
- Polietilenoglicol
PPGBIOQ - Programa de Pós-Graduação em Bioquímica
- Radical Alcoxila
- Radical Peroxila
- Sistema Nervoso Central
- Superóxido Dismutase
- Substâncias Reativas ao Ácido Tiobarbitúrico
SUMÁRIO
1 INTRODUÇÃO .
2 REVISÃO BIBLIOGRÁFICA .
2.1 Esquizofrenia .
2.1.1 Esquizofrenia refratária .
2.2 Radicais livres, estresse oxidativo e defesas antioxidantes .
2.2.1 Esquizofrenia X estresse oxidativo .
2.4 Sistemas carreadores de fármacos .
2.4.1 Nanocápsulas .
2.4.2 Quitosana .
2.4.3 Polietilenoglicol .
3.1 Objetivo geral .
3.2 Objetivos específicos .
Abstract …………………….
1 Introduction ……………….
2 Material and methods .
Conflicts of interest statement ….
Abstract …………………….
1 Introduction ……………….
2 Material and methods .
3 Results ……………….
Conflicts of interest statement ….
MANUSCRITO III …………………….
Abstract …………………….
1 Introduction ……………….
2 Material and methods .
Conflicts of interest statement ….
5 PERSPECTIVAS .
Anexo A - Protocolo de aprovação do projeto pelo CEUA-UNIPAMPA .
A presente dissertação foi dividida em três partes principais. Na parte I encontram-se a
INTRODUÇÃO, REVISÃO BIBLIOGRÁFICA e OBJETIVOS. Os resultados que fazem
parte desta dissertação estão apresentados sob a forma de manuscritos, nos itens
MANUSCRITO I, MANUSCRITO II e MANUSCRITO III, os quais se encontram na
parte II deste trabalho. As seções materiais e métodos, resultados, discussão e referências,
encontram-se nos próprios manuscritos e representam a íntegra deste estudo. O item
CONCLUSÃO encontra-se na parte III desta dissertação, apresentando interpretações e
comentários gerais sobre os resultados mostrados nos manuscritos deste trabalho. No item
PERSPECTIVAS, estão expostos os possíveis estudos para dar continuidade a este trabalho.
O item REFERÊNCIAS refere-se somente às citações que aparecem nos itens introdução e
revisão bibliográfica desta dissertação.
1 INTRODUÇÃO
A esquizofrenia é um transtorno psicótico, ou grupo de transtornos, ocorrendo
normalmente na fase mais tardia da adolescência ou no início da idade adulta. Geralmente, há
prejuízo das funções ocupacionais caracterizado por afastamento social, perda de interesse
e/ou capacidade de agir (HÄFNER & VAN DER HEIDEN, 2003; FALKAI et al., 2006).
O termo esquizofrenia refratária (ER) ou esquizofrenia resistente ao tratamento refere-
se à persistência de sintomas positivos moderados a graves, com o paciente fazendo uso de
medicação. Alguns autores levam em consideração sintomas negativos e cognitivos, bem
como a incapacidade do indivíduo retornar ao seu melhor nível de funcionamento
(PEUSKENS, 1999; MELTZER & KOSTACOGLU, 2001; ELKIS & MELTZER, 2007).
A clozapina (CZP) é o antipsicótico de escolha, em indivíduos com ER, uma vez que
há evidências da maior eficácia clínica em relação aos demais antipsicóticos (ELKIS &
MELTZER, 2007; MCILWAIN et al., 2011). Antipsicótico de segunda geração derivado
dibenzodiazepínico, suas principais indicações incluem o tratamento da esquizofrenia não
responsiva a fármacos antipsicóticas convencionais e de pacientes com intolerância a outros
antipsicóticos (ABIDI & BHASKARA, 2003; MCILWAIN et al., 2011).
A clozapina sofre extenso metabolismo de primeira passagem, e a metabolização do
fármaco ocorre no fígado, predominantemente, originando dois metabólitos, a N-
desmetilclozapina e a clozapina-N óxido, esses são reativos e parecem danificar as células,
como as do fígado e medula óssea (BUUR-RASMUSSEN & BROSEN, 1999).
A limitação clínica na utilização da CZP se deve a gravidade dos seus efeitos adversos.
Entre as complicações mais graves que este agente antipsicótico pode causar estão a
granulocitopenia e agranulocitose (ALVIR, 1993; GASZNER, MAKKOS & KOSZA, 2002;
DUTT et al., 2010; RAMÍREZ et al., 2011; MANU et al. , 2012; PONS et al., 2012). As
cardiomiopatias, em que a mortalidade cardiovascular é uma das principais causas de óbito
em pacientes com esquizofrenia, sendo que, o risco é duas vezes maior do que a população
em geral (LEITÃO-AZEVEDO et al., 2007; RAMÍREZ et al., 2011; RONALDSON et al.,
2011; MANU et al. , 2012), e, outro efeito adverso é a hepatotoxicidade relacionada aos
metabólitos da CZP, podendo induzir alteração das transaminases e causar insuficiência
hepática (HUMMER et al., 1997; NEVES et al., 2006).
Estudos demonstram que o estresse oxidativo está envolvido na progressão de
inúmeras doenças, dentre as quais estão às doenças neurológicas e a esquizofrenia
(DIETRICH-MUSZALSKA et al., 2009, 2012; DIETRICH-MUSZALKA & OLAS, 2009).
Estudos realizados em ratos tratados com haloperidol e/ou CZP demonstraram que
estes fármacos foram capazes de induzir dano oxidativo em diversas estruturas no sistema
nervoso central (SNC) (POLYDORO et al., 2004; AGOSTINHO et al., 2007). Achados
similares foram relatados em um estudo que avaliou o dano oxidativo no cérebro de ratos
induzido pela administração crônica de haloperidol e/ou CZP e/ou olanzapina, em que a CZP
induziu dano oxidativo, embora menor que o haloperidol, e, não foi verificado dano oxidativo
induzido por olanzapina (REINKE et al., 2004). Outros trabalhos mostram que pacientes
esquizofrênicos possuem elevados níveis de homocisteína, grupamentos carbonil e
isoprostanos em plasma decorrentes do estresse oxidativo (DIETRICH-MUSZALKA et al.,
2009, 2012; DIETRICH-MUSZALKA & OLAS, 2009).
Portanto, em virtude dessas complicações graves associadas ao uso da CZP torna-se
necessário a utilização de uma forma farmacêutica capaz de vetorizar esse fármaco para seu
local de ação, no caso o SNC, reduzindo seus efeitos periféricos indesejáveis, fazendo dos
sistemas nanoparticulados uma ferramenta promissora. As nanopartículas (NP) poliméricas,
como as nanocápsulas (NC), vem sendo utilizadas como carreadores para diversos fármacos
com diferentes objetivos terapêuticos, como a vetorização dos mesmos para a biofase com
consequente redução de efeitos adversos (HANS & LOWMAN, 2002).
Dentre as matérias-primas que podem ser utilizadas na preparação das NP estão a
quitosana (QTS) e o polietilenoglicol (PEG). A QTS polímero de origem natural, com
características de bioadesividade e a biocompatibilidade, possui cargas positivas que podem
facilitar a interação com componentes de carga negativa das membranas celulares, auxiliando
na permeação do fármaco. O PEG, polímero comumente utilizado possui como finalidade a
modificação da superfície, é hidrofílico, não-iônico e biocompatível (HANS & LOWMAN,
Aspectos relacionados à segurança dos sistemas nanoparticulados ainda devem ser
estudados, como o dano oxidativo. Até o presente, existem poucos estudos publicados na
literatura consultada que mostrem o envolvimento do estresse oxidativo e a CZP tanto em
modelo animal quanto em humanos, bem como estudos nanotoxicológicos que contemplem
nanossistemas contendo CZP e o dano oxidativo celular e tecidual.
2 REVISÃO BIBLIOGRÁFICA
2.1 Esquizofrenia
A esquizofrenia é uma forma grave de doença mental, sendo considerada um
transtorno psicótico maior, ou grupo de transtornos, que apresenta diferentes sintomas de
forma heterogênea (CROW, 1985; HÄFNER & VAN DER HEIDEN, 2003; WHO, 2013).
Geralmente, aparece na fase mais tardia da adolescência ou no início da idade adulta, por ser
uma doença de etiologia complexa acomete diferentes indivíduos, além de possuir uma alta
variabilidade nos mesmos indivíduos no decorrer do tempo (CROW, 1985; MARENCO &
WEINBERGER, 2000; FALKAI et al., 2006).
Normalmente, há prejuízo das funções ocupacionais caracterizada por afastamento
social, perda de interesse ou capacidade de agir (HÄFNER & VAN DER HEIDEN, 2003). A
psicopatologia da doença se caracteriza por fenômenos positivos, negativos e cognitivos
(CROW, 1985). Os sintomas positivos incluem aqueles que o indivíduo não deveria
apresentar, mas os apresentam como delírios, alucinações, sintomas catatônicos, agitação e
desconfiança. Já os sintomas negativos se referem aqueles que o indivíduo deveria apresentar,
mas não os apresentam como a redução das expressões emocionais, diminuição da
produtividade do pensamento e da fala, retraimento social e monotonia afetiva. Além disso, o
indivíduo apresenta sintomas desorganizados incluindo desorganização do pensamento e do
comportamento associada ao comprometimento da atenção (FALKAI et al., 2006).
Estudos vem sendo realizados com o intuito de determinar o papel de variáveis como
fatores genéticos, bioquímicos e alterações na morfologia cerebral no desenvolvimento da
esquizofrenia. Segundo a hipótese do neurodesenvolvimento, a patologia seria o resultado de
um distúrbio do desenvolvimento cerebral durante os períodos pré e perinatal. Porém, a
natureza precisa dessa alteração cerebral, bem como de sua patogênese, ainda não foi
totalmente definida (MARENCO & WEINBERGER, 2000).
Sua prevalência é de aproximadamente 1 caso a cada 100 pessoas, bastante comum na
população, mas essa estimativa pode variar de acordo com a metodologia utilizada nos
diferentes estudos (HÄFNER & VAN DER HEIDEN, 2003; FALKAI et al., 2006). Segundo
dados da Organização Mundial de Saúde (OMS), cerca de 7 a cada 1000 indivíduos da
população adulta são acometidos pela doença, principalmente na faixa etária de 15 a 35
anos. São cerca de 24 milhões de pessoas no mundo diagnosticadas com esquizofrenia (WHO,
Não há cura para a esquizofrenia, porém a doença possui tratamento, sendo este mais
eficaz se iniciado nos estágios iniciais da doença. Mais de 50% dos casos de esquizofrenia
não recebem cuidados e tratamento adequados, sendo que desses, 90% dos indivíduos
acometidos pela doença estão em países em desenvolvimento (WHO, 2013). O tratamento
farmacológico deve ser introduzido com rigor e cautela. Recomenda-se iniciar a terapêutica
antipsicótica em doses baixas, seguido de ajuste gradual da dose de acordo com a melhora e
bem estar de cada paciente (FALKAI et al., 2006).
Os antipsicóticos de primeira geração (APG), também chamados de antipsicóticos
convencionais ou típicos, tem sua dose terapêutica e sua tendência de causar efeitos colaterais
extrapiramidais intimamente relacionadas a sua afinidade por receptores de dopamina,
particularmente aos receptores D2. A eficácia dos APG na redução de sintomas positivos e na
prevenção de recidivas é considerada inquestionável, contudo, as limitações da intervenção
com APG decorrem do alcance limitado desse tipo de tratamento sobre os sintomas negativos
da doença, bem como sobre a disfunção cognitiva, fatos esses que contribuem para a baixa
qualidade de vida e déficits funcionais dos pacientes (FALKAI et al., 2006).
Antipsicóticos de segunda geração (ASG), ou antipsicóticos atípicos, tem
farmacocinética similar à dos APG. Os ASG são rápida e predominantemente absorvidos após
administração oral, e frequentemente passam por extenso metabolismo de primeira passagem
hepático (BURNS, 2001). São altamente lipofílicos, altamente ligados a proteínas, e tendem a
se acumular no cérebro e em outros tecidos (FALKAI et al., 2006).
Os APG estão associados ao alto risco de efeitos colaterais extrapiramidais e risco
moderado de sedação. Enquanto que, os ASG tem maior eficiência e menor incidência de
efeitos adversos, dados demonstrados em diferentes estudos evidenciam a superioridade da
classe em relação aos demais antipsicóticos (FACTOR, 2002; ABIDI & BHASKARA, 2003;
FALKAI et al., 2006).
Além do mais, APG acarretam efeitos adversos importantes principalmente aqueles
relacionados ao movimento, como sintomas extrapiramidais e disforia, o que acaba por
comprometer a tolerabilidade e aderência dos pacientes ao tratamento (MÖLLER, 2000a;
Tais fatos estimularam o desenvolvimento dos ASG, cuja maior vantagem é a baixa
propensão a efeitos extrapiramidais, principalmente a discinesia tardia. Além disso, os ASG
demonstraram maior eficácia no tratamento dos sintomas negativos, dos distúrbios cognitivos
e dos sintomas depressivos da doença, tem seu perfil clínico descrito como o espectro mais
amplo de eficácia clínica (MÖLLER, 2000a; 2000b). Existem alguns riscos relacionados aos
ASG, como distúrbios de utilização da glicose, metabolismo de lipídios e ganho de peso,
também descritos e relacionados a alguns dos APG, porém, podem ser ainda mais
pronunciados em alguns ASG (FALKAI et al., 2006).
Como primeira escolha para a terapêutica clínica farmacológica da esquizofrenia,
devem ser utilizados, preferencialmente, os ASG devido sua reconhecida superioridade em
relação aos demais medicamentos. Alternativamente, recomenda-se o uso de APG no limite
inferior da faixa terapêutica. Essa recomendação é baseada principalmente na melhor
tolerabilidade e no risco reduzido de discinesia tardia dos ASG (FALKAI et al., 2006).
A seleção de uma medicação antipsicótica é guiada pela experiência prévia do
paciente, considerando sua resposta terapêutica e a relação da dose efetiva com os efeitos
colaterais relatados pelo indivíduo. Para reduzir o risco de sintomas extrapiramidais,
recomenda-se o emprego de doses tão baixas quanto possível, especialmente quando se optar
pelo uso de APG (FALKAI et al., 2006).
Estudos demonstram que, dentre os ASG, é a CZP que possui maior eficácia e
menores efeitos adversos, inclusive aqueles relacionados aos sintomas extrapiramidais, sendo
considerada superior aos demais agentes neurolépticos (FALKAI et al., 2006; MCILWAIN et
2.1.1 Esquizofrenia refratária
A esquizofrenia é uma enfermidade crônica, onde mais de 80% dos pacientes exibem
algum tipo de disfunção, seja ele, social ou ocupacional, portanto, torna-se difícil estabelecer
uma linha divisória entre a esquizofrenia responsiva e a refratária ao tratamento (MELTZER,
Há uma distinção entre a cronicidade e a refratariedade. Existem diversas e diferentes
doenças crônicas, como diabetes ou hipertensão, que apesar de sua cronicidade respondem ao
tratamento, onde os pacientes tem suas doenças estabilizadas pelo uso contínuo de medicação
específica (ELKIS & MELTZER, 2007).
O termo ER, ou esquizofrenia resistente ao tratamento, é por vezes incorretamente
aplicado a pacientes que se mantêm sintomáticos por não aderirem ao tratamento (ELKIS &
MELTZER, 2007). A aderência ao tratamento deve ser verificada, se necessário, pela
determinação das concentrações séricas dos medicamentos (FALKAI et al., 2006).
A ER é normalmente caracterizada pela persistência de sintomas positivos moderados
a graves (PEUSKENS, 1999; FALKAI et al., 2006). Porém, mesmo que os sintomas positivos
entrem em remissão com o tratamento, outros sintomas residuais frequentemente persistem
(FALKAI et al., 2006).
Não há um consenso a respeito do conceito de ER. Alguns pesquisadores mencionam
que devem ser levados em consideração ainda, sintomas negativos e cognitivos, como a
gravidade da disfunção cognitiva, comportamentos bizarros, sintomas afetivos, déficits
funcionais e sociais, a má qualidade de vida, bem como a incapacidade do paciente em
retornar ao seu melhor nível (MELTZER & KOSTACOGLU, 2001; FALKAI et al., 2006).
Estudos apontam que cerca de 10% a 30% dos esquizofrênicos não respondem ou tem
pouca resposta a um tratamento neuroléptico convencional, e até 30% dos pacientes tem
respostas parciais ao tratamento, ou seja, obtém melhora na psicopatologia, mas continuam a
ter alucinações e delírios leves a graves (BRENNER et al., 1990; LOUZÃ NETO, 1995;
ESSOCK et al., 1996; HENNA, 1999). É extremamente necessário estabelecer se a resposta
terapêutica foi insuficiente em relação ao tratamento adotado (FALKAI et al., 2006).
Diretrizes para o tratamento da esquizofrenia da American Psychiatric Association e
algoritmos do Texas Medication Algorithm Project estabelecem que após o fracasso de dois
ou três tratamentos com antipsicóticos atípicos, o paciente deve ser considerado como
portador de ER (LEHMAN et al. 2004; MILLER et al. 2004).
Outros autores mencionam que deve-se levar em consideração o fracasso do emprego
alternativo de pelo menos dois antipsicóticos, onde um deve ser um agente atípico, após a
medicação ser administrada nas doses recomendadas por pelo menos 6 até 8 semanas
(FALKAI et al., 2006). Caso o quadro seja confirmado significa que o paciente é candidato ao
tratamento com CZP, droga aprovada para o tratamento da ER, sendo assim, o tratamento de
primeira escolha para essa enfermidade (LOUZÃ NETO, 1995; HENNA, 1999; LEHMAN et
al. 2004; MILLER et al. 2004).
Estudos demonstram de forma consistente que a CZP possui maior eficácia e menores
efeitos adversos, sendo considerada superior aos agentes neurolépticos convencionais na
terapêutica da ER (FALKAI et al., 2006).
2.2 Radicais livres, estresse oxidativo e defesas antioxidantes
Radical livre (RL) é o termo utilizado para caracterizar espécies atômicas ou
moleculares que contenham um ou mais elétrons desemparelhados na sua camada de valência,
o que as torna espécies altamente reativas que agem como eletrófilos capazes de reagir com
qualquer composto que esteja próximo, assumindo o papel de agentes oxidantes
(HALLIWELL, 1991; GILLHAN, PAPACHRISTODOULOU & THOMAS, 1997;
HALLIWELL & GUTTERIDGE, 2007).
No entanto, o termo RL não serve para designar todos os agentes reativos, pois alguns
não possuem elétrons desemparelhados na sua camada mais externa, como o peróxido de
hidrogênio (H2O2). Mesmo não sendo um RL, esse composto químico pode gerar dano
celular, particularmente por ser capaz de reagir com o radical ânion superóxido (O -
mediado por íons de ferro ou cobre, formando o radical hidroxila (OH ). Este, por sua vez, é
altamente reativo (HALLIWELL, 1991).
Dentre os oxidantes mais importantes envolvidos em processos patológicos estão às
espécies reativas de oxigênio (ERO) e as espécies reativas de nitrogênio (ERN). As principais
ERO distribuem-se em dois grupos: radicalares e não radicalares. Fazem parte do grupo das
2 , OH , radical peroxila (ROO ) e radical alcoxila (RO ). Já o grupo das não
radicalares é composto por: oxigênio singleto (O2), H2O2 e ácido hipocloroso (HOCl). As
ERN incluem-se o radical óxido nítrico (NO ), óxido nitroso (N2O) e o ânion peroxinitrito
(ONOO-), dentre outros compostos (GILLHAM, PAPACHRISTODOULOU & THOMAS,
As espécies reativas podem ser formadas no organismo de diversos modos. Nos
organismos aeróbios geralmente ocorre com a redução de uma molécula de O
reação de óxido-redução. Os radicais podem ser formados por processos de oxidação
provenientes do metabolismo aeróbico, portanto são produzidos naturalmente ou por uma
disfunção biológica (HALLIWELL, 1991; BARREIROS & DAVID, 2006). Durante a
fosforilação oxidativa também podem ser formados, mecanismo este usado pelas células para
produzir energia. Podem ainda ser produzidos durante a oxidação de ácidos graxos, reações
do citocromo P450 e de células fagocíticas. Algumas enzimas também são capazes de gerar
ERO, sob condições normais ou patológicas. Além de fontes exógenas como tabaco,
radiações, luz ultravioleta, solventes e alguns fármacos (BIESALSKI, 2002; JUNQUEIRA &
Em condições fisiológicas normais, as ERO desempenham um papel importante nos
seres vivos. Dentre as suas funções no organismo a regulação da resposta imune, participando
do processo de defesa contra infecções, sinalização intracelular, induzindo a apoptose sendo
capaz de eliminar bactérias e partículas em um processo de fagocitose (HALLIWELL, 1991;
BIESALSKI, 2002; HALLIWELL & GUTTERIDGE, 2007; RAY, HUANG & TSUJI, 2012).
O campo de RL e antioxidantes, ou biologia redox, é fundamental para a vida
aeróbica. Constantemente espécies reativas modulam suas atividades sintetizando
antioxidantes. Este equilíbrio permite que algumas espécies reativas executem funções úteis
como minimizar os danos oxidativos (HALLIWELL, 2011).
No entanto, quando ocorre um aumento das ERO ou ERN e/ou uma diminuição da
capacidade antioxidante, ou seja, um desequilíbrio entre os sistemas, as espécies reativas são
capazes de lesar componentes celulares direta ou indiretamente, modificando sua estrutura
e/ou função e gerando o estresse oxidativo. As espécies reativas são capazes de danificar
biomoléculas como lipídeos de membrana, proteínas e também o ácido desoxirribonucléico
(DNA) (SCHAFER & BUETTNER, 2001; MONAGHAN, METCALFE & TORRES, 2009).
Estudos sugerem diversas e abundantes evidências, demonstrando o envolvimento do
estresse oxidativo na progressão e patogênese de inúmeras doenças que afetam praticamente
todos os sistemas do corpo humano, como anemia falciforme (MANFREDINI et al., 2008),
Diabete Mellitus tipo 2 (MANFREDINI et al., 2010), erros inatos do metabolismo (RIBAS et
al., 2010), doenças neurológicas e também a esquizofrenia (DIETRICH-MUSZALSKA et al.,
2009, 2012; DIETRICH-MUSZALKA & OLAS, 2009; HALLIWELL, 2012a; 2012b).
Tendo em vista o papel do estresse oxidativo em diferentes patologias, é importante a
ação dos antioxidantes na manutenção da saúde, bem como na prevenção e tratamento de
doenças (NIKI, 2010). A produção contínua de RL durante os processos metabólicos
ocasionou o desenvolvimento de mecanismos de defesa antioxidante para limitar os níveis
intracelulares de ERO e ERN, bem como para impedir a indução danos oxidativos (SIES,
Para proteger o organismo do ataque dessas espécies reativas, existe uma série de
sistemas de defesa antioxidante, como o sistema enzimático que é a primeira via de defesa do
organismo, onde enzimas específicas inativam algumas das ERO. Desta forma, o sistema
antioxidante enzimático diminui as ERO e, consequentemente o dano às estruturas biológicas,
fazem parte deste grupo as enzimas antioxidantes catalase (CAT), superóxido dismutase
(SOD) e glutationa peroxidase (GPx) (GUTTERIDGE & HALLIWELL, 2000; BELLÓ,
2002; HALLIWELL & GUTTERIDGE, 2007).
Outro sistema de defesa é o sistema não enzimático o qual é representado por
compostos antioxidantes que podem ter origem endógena ou serem obtidas através da
alimentação. Estes são subdivididos em compostos antioxidantes hidrofílicos como glutationa
reduzida (GSH), vitamina C e polifenóis, e em compostos antioxidantes lipofílicos como a
vitamina E e carotenoides (GUTTERIDGE & HALLIWELL, 2000).
Os agentes antioxidantes são substâncias capazes de inibir e/ou reduzir a oxidação,
mesmo quando presentes em baixas concentrações em relação a seu substrato oxidável, com
consequente redução dos danos causados pelos RL nas células. Desta forma, esses agentes
tem a função de proteção das células contra os efeitos deletérios dos RL, dos processos ou
reações que levam à oxidação de macromoléculas ou estruturas celulares. Podendo prolongar
a fase de iniciação ou então inibir a fase de propagação, mas não podem prevenir
completamente a oxidação (BIANCHI & ANTUNES, 1999; GUTTERIDGE &
HALLIWELL, 2000; BARREIROS & DAVID, 2006).
2.2.1 Esquizofrenia X estresse oxidativo
Os RL induzem o estresse oxidativo e danos em todos os tipos de moléculas biológicas
e podem estar envolvidos na patologia da esquizofrenia (HALLIWELL, 2006; DIETRICH-
MUSZALKA & OLAS, 2009; HALLIWELL, 2012a; 2012b). O cérebro e o SNC são
propensos ao estresse oxidativo, pois estão insuficientemente equipados com sistemas de
defesa antioxidante para prevenir o dano oxidativo imposto pelas doenças neurodegenerativas
(HALLIWELL, 2006).
Em pacientes esquizofrênicos ocorre a desregulação do metabolismo de ERO e ERN,
tal processo pode ser verificado através das análises das atividades anormais das enzimas
antioxidantes, além de outros biomarcadores de estresse oxidativo como a peroxidação
lipídica em plasma, glóbulos vermelhos, plaquetas e/ou líquido cefalorraquidiano (REDDY &
YAO, 1996; YAO et al., 1998; DIETRICH-MUSZALKA, OLAS & RABE-JABLONSKA,
2005). Tais achados tem sido associados com discinesia tardia, sintomas negativos e sinais
neurológicos (LI et al., 2006).
Estudos sugerem que o excesso de formação de ERO pode desempenhar um papel
crucial na etiologia da esquizofrenia. A disfunção da membrana celular causada pela
peroxidação lipídica pode ser secundária a uma patologia mediada por RL e pode contribuir
para a sintomatologia e complicações do tratamento. Estudos realizados por meio da avaliação
da atividade da enzima antioxidante SOD em plaquetas evidenciaram a indução de estresse
oxidativo em pacientes esquizofrênicos, sugerindo que a supressão da atividade da SOD em
pacientes com esquizofrenia está associada com maior geração de ERO e da peroxidação
lipídica (DIETRICH-MUSZALKA, OLAS & RABE-JABLONSKA, 2005).
Relatos na literatura mencionam que o nível de isoprostanos, outro indicador de
estresse oxidativo, em pacientes com esquizofrenia em fase aguda de psicose é extremamente
elevado, sendo que o aumento da produção de isoprostanos reflete o estresse oxidativo, bem
como o dano oxidativo de lipídios (DIETRICH-MUSZALKA & OLAS, 2009).
A modificação de proteínas desempenha um papel essencial na patogênese da doença,
além do mais, foram relatadas também alterações nos níveis da GSH, cisteína e
cisteinilglicina, as quais são compostos scavenger fisiológicos de RL, os quais encontraram-se
níveis diminuídos, ao passo que os níveis de homocisteína encontrados foram
significativamente elevados no plasma de pacientes esquizofrênicos em fase aguda de psicose
(DIETRICH-MUSZALKA et al., 2009; 2012).
Alguns dos neurolépticos podem alterar parâmetros de estresse oxidativo e função
cognitiva do indivíduo, potencializando ainda mais os sintomas da doença. Além de induzir
efeitos citotóxicos, foi demonstrado que ambos neurolépticos típicos e atípicos, podem alterar
a função cognitiva em humanos e modelos animais (CLEGHORN et al., 1990). A atividade
antioxidante diminuída é considerada como uma das causas da discinesia tardia em pacientes
esquizofrênicos em curso com tratamento prolongado com neurolépticos. APG, como o
haloperidol, são capazes de potencializar o estresse oxidativo, enquanto que os ASG, como a
CZP, produzem menor dano oxidativo (AGOSTINHO et al., 2007).
Estudos realizados em ratos tratados com haloperidol e/ou CZP demonstraram que
estes fármacos foram capazes de induzir dano oxidativo em diversas estruturas no SNC,
verificado através de análises de peroxidação lipídica pelo nível de substâncias reativas ao
ácido tiobarbitúrico (TBARS), carbonilação de proteínas, e atividade das enzimas
antioxidantes CAT e SOD (POLYDORO et al., 2004; AGOSTINHO et al., 2007).
Achados similares foram relatados em estudo que avaliou o dano oxidativo, através do
TBARS e da carbonilação de proteínas, no cérebro de ratos induzido pela administração
crônica de haloperidol, CZP e/ou olanzapina. Onde, a CZP induziu dano oxidativo, embora
menor que o haloperidol, não foi verificado dano oxidativo induzido por olanzapina. Sendo
assim, o dano e efeitos adversos provocados pela CZP tem sido associado ao estresse
oxidativo, tanto por formação de RL quanto pela inibição de defesas celulares enzimáticas e
não-enzimáticas (REINKE et al., 2004). Também foi demonstrado que a clozapina induz
estresse oxidativo em neutrófilos, que pode desencadear agranulocitose (FEHSEL, 2005).
2.3 Clozapina
A CZP (Figura 1) é considerada o protótipo dos fármacos antipsicóticos atípicos,
sendo o advento do fármaco o marco para uma nova classe de antipsicóticos, denominados de
atípicos ou ASG, um derivado dibenzodiazepínico (FACTOR, 2002; FLEISCHHACKER,
2002; ABIDI & BHASKARA, 2003; GASZNER & MAKKOS, 2004).
FIGURA 1 – Estrutura química da clozapina
Fonte: Adaptado de Sanders-Bush & Hazelwood, 2012, p.359
É o mais eficaz tratamento para a ER, devido ao seu perfil terapêutico distinto com
menores efeitos secundários, sendo que suas principais indicações incluem o tratamento de
pacientes que tem pouca ou nenhuma resposta terapêutica a outros antipsicóticos, ou seja,
esquizofrenia não responsiva a fármacos antipsicóticos convencionais e de pacientes com
intolerância a outros antipsicóticos (FACTOR, 2002; ABIDI & BHASKARA, 2003; IQBAL,
2005; TANDON, CARPENTER & DAVIS, 2007; MCILWAIN et al., 2011; KANE, 2012).
Os ASG, incluindo a CZP, induzem consideravelmente menor efeito extrapiramidal,
numa faixa de dose terapêutica efetiva quando comparados aos APG. Sendo que a CZP foi o
primeiro fármaco a apresentar efeitos extrapiramidais insignificantes (FLEISCHHACKER,
2002; NEWCOMER, 2005; DASKALAKIS & GEORGE, 2009; MCILWAIN et al., 2011).
Trata-se de um agente antipsicótico efetivo que não induz catalepsia e possui a
capacidade de melhorar a discinesia tardia, além de apresentar um perfil terapêutico
melhorado em relação aos APG, sendo eficaz sobre os sintomas positivos e negativos da ER,
e tendo sua superioridade eficácia terapêutica reconhecida (GASZNER & MAKKOS, 2004;
NEWCOMER, 2005; DASKALAKIS & GEORGE, 2009; MCILWAIN et al., 2011).
Relatos na literatura demonstram que a CZP é um fármaco que possui alto potencial
oxidante, embora produza menor dano oxidativo quando comparada a outros fármacos
(POLYDORO et al., 2004; REINKE et al., 2004; AGOSTINHO et al., 2007). A CZP é
metabolizada no fígado, originando, predominantemente, dois metabólitos a N-
desmetilclozapina e a clozapina-N óxido, os quais são reativos e podem danificar as células e
tecidos (BUUR-RASMUSSEN & BROSEN, 1999).
No entanto, são os efeitos adversos da CZP, devido a sua baixa biodisponibilidade,
que tem limitado seu uso clínico, além de possuir um prejudicial efeito sobre o perfil
metabólico dos pacientes. A CZP é um fármaco lipofílico, por isso é rapidamente absorvida
por via oral (JANN, 1991; MELTZER, 2004; NEWCOMER, 2005).
Das inúmeras complicações ocasionadas pela CZP, a mais devastadora, que este
agente pode causar é a granulocitopenia, podendo chegar à sua forma mais grave, a
agranulocitose (ALVIR, 1993; GASZNER, MAKKOS & KOSZA, 2002; DUTT et al., 2010;
RAMÍREZ et al., 2011; MANU et al. , 2012; PONS et al., 2012; NUNES et al., 2013).
Esse efeito colateral é o problema mais significativo na utilização clínica da clozapina,
pois a agranulocitose gera uma condição de risco de morte ao paciente, no qual o número de
células brancas do sangue é fortemente reduzido, e a resistência a infecções pode ser
severamente diminuída (BERGEMANN et al., 2007).
Em particular, a neutropenia e agranulocitose, são o foco de preocupação durante o
tratamento com este antipsicótico, com uma incidência de agranulocitose de cerca de 1% e de
neutropenia de cerca de 3% (ATKIN et al. 1996; LAMBERTENGHI, 2000; WULFF, 2007;
MANU et al. , 2012; PONS et al., 2012).
O tratamento com CZP exige um estreito acompanhamento clínico e triagem
hematológica programada obrigatória, tendo em vista que a grande maioria dos efeitos
hematológicos induzidos pela CZP ocorre principalmente durante os primeiros três meses de
terapia, com o maior risco nas primeiras 6 a 18 semanas de tratamento (ATKIN et al. 1996;
GASZNER, MAKKOS & KOSZA, 2002).
É importante destacar entre os riscos associados ao fármaco estão as cardiomiopatias,
que em casos mais extremos pode levar a morte súbita do indivíduo. A morte em decorrência
de alguma disfunção cardiovascular é uma das principais causas de óbito em pacientes com
esquizofrenia, sendo que o risco é duas vezes maior do que na população em geral (LEITÃO-
AZEVEDO et al., 2007; RAMÍREZ et al., 2011; RONALDSON et al., 2011). Em graus
variáveis, todos os antipsicóticos podem causar efeitos colaterais cardíacos. Estudos
constaram alterações metabólicas nos portadores de esquizofrenia usuários de ASG com
prevalência de aproximadamente 80% de dislipidemia e 40% de glicemia alterada (LEITÃO-
AZEVEDO et al., 2006; 2007).
A miocardite induzida por CZP está entre as patologias cardiovasculares que mais
acometem indivíduos com ER (RAMÍREZ et al., 2011; RONALDSON et al., 2011; MANU
et al., 2012). Relatos indicam que o uso da CZP está associado ao risco de miocardite em
1:500 a 1:10.000 dos pacientes tratados (WARNER et al., 2000; LA GRENADE, GRAHAM
& TRONTELL, 2001). Se o diagnóstico for provável, a CZP deve ser suspensa
imediatamente, e o paciente encaminhado urgentemente para um especialista (MARDER et
Outro efeito adverso é a hepatotoxicidade relacionada aos metabólitos da CZP, cerca
de 40% dos pacientes apresentam alguma alteração nas transaminases, podendo causar
insuficiência hepática em 0,06% dos pacientes (HUMMER et al., 1997; NEVES et al., 2006).
Tais riscos exigem um monitoramento laboratorial adequado, onde o acompanhamento
clínico é pré-requisito, como medida de segurança, para o uso deste fármaco. O uso do
medicamento deve ser interrompido imediatamente sempre que houver suspeita de
complicações do quadro clínico (GASZNER, MAKKOS & KOSZA, 2002).
Em virtude das complicações graves associadas ao uso de CZP torna-se necessária a
utilização de uma forma farmacêutica capaz de vetorizar esse fármaco para seu local de ação,
o SNC, reduzindo seus efeitos adversos. Uma forma de alcançar esse objetivo seria por meio
dos sistemas nanoparticulados, os quais são capazes não apenas de conferir proteção ao
fármaco contra a degradação para que menos metabólitos reativos sejam gerados, bem como
também na redução da toxicidade e ocorrência de efeitos adversos. Sendo considerada uma
ferramenta útil para esse fim, as NC podem favorecer o aumento do uso clínico da CZP
podendo beneficiar e melhorar a qualidade de vida de diversos pacientes (SOPPIMATH et al.,
2001; HANS & LOWMAN, 2002; BERNARDI et al., 2009).
2.4 Sistemas carreadores de fármacos
Dentre os sistemas carreadores de fármacos, os sistemas nanoparticulados, compostos
que apresentam diâmetro entre 10 e 1000 nm, tem despertado atenção devido às suas
vantagens como vetores, destacando-se os lipossomas e as partículas poliméricas
(COUVREUR, FATAL & ANDREMONT, 1991; SOPPIMATH et al., 2001).
As NP poliméricas tem atraído interesse como sistemas de entrega de fármacos,
podendo ser utilizadas no transporte e liberação de fármacos de maneira controlada e efetiva
em locais específicos, especialmente no SNC (RIEUX et al., 2006). A metodologia utilizada
no preparo das NP poliméricas define o tipo da formulação, podendo obter-se NC ou
nanoesferas, as quais diferem uma da outra de acordo com sua composição e organização
estrutural (Figura 2) (COUVREUR, FATAL & ANDREMONT, 1991; SCHAFFAZICK et
FIGURA 2 – Representação esquemática de nanocápsulas e nanoesferas poliméricas. a) fármaco dissolvido no núcleo oleoso das nanocápsulas; b) fármaco adsorvido à parede polimérica das nanocápsulas; c) fármaco retido na matriz polimérica das nanoesferas; d) fármaco adsorvido ou disperso molecularmente na matriz polimérica das nanoesferas. Fonte: Schaffazick et al., 2003, p.726
As NC são constituídas por um invólucro polimérico disposto ao redor de um núcleo
oleoso, podendo o fármaco estar dissolvido neste núcleo e/ou adsorvido à parede polimérica.
Já as nanoesferas, não apresentam óleo em sua composição, são formadas por uma matriz
polimérica, onde o fármaco pode ficar retido ou adsorvido (COUVREUR, FATAL &
ANDREMONT, 1991; ALLÉMANN, GURNY & DOELKER, 1993).
A viabilidade da administração de fármacos, de ação no cérebro, utilizando NP
poliméricas pode abrir novas perspectivas para o tratamento da esquizofrenia, principalmente
pela possibilidade de atividade biológica em doses baixas. Estudo realizado com NP
carregadas com o antipsicótico risperidona demonstraram que os nanossistemas foram
capazes de prolongar o efeito do fármaco e de reduzir os efeitos extrapiramidais (MUTHU et
Estudos envolvendo NP de clozapina tem apresentado resultados promissores como
boa biocompatibilidade, grande área de superfície, boa propriedade de dispersão e maior
biodisponibilidade do fármaco lipofílico (VENKATESWARLU & MANJUNATH, 2004;
MANJUNATH & VENKATESWARLU, 2005; MASHHADIZADEH & AFSHAR,
Diversos autores descrevem a enorme utilidade de sistemas nanoparticulados na
terapêutica clínica de diversos fármacos, porém estudos relacionados à segurança desses
sistemas ainda são limitados e ainda devem ser estudados como o dano oxidativo. Algumas
das propriedades desses sistemas que provaram benefícios terapêuticos, porém podem levar a
acúmulos celulares e toxicidade em longo prazo (LANDSIEDEL et al., 2009; SINGH et al.,
2.4.1 Nanocápsulas
As nanocápsulas estão sendo utilizadas como carreadores para diversos fármacos com
diferentes objetivos terapêuticos visando à vetorização dos mesmos para a biofase, com
consequente redução dos seus efeitos adversos (HANS & LOWMAN, 2002;
CHAKRAVARTHI et al., 2010).
Estudos realizados com NC carregadas com haloperidol demonstraram que a
nanoencapsulação em sistemas poliméricos é uma ferramenta terapêutica promissora. Os
dados demonstraram a viabilidade da preparação das NC para melhorar a eficácia terapêutica
do haloperidol. O efeito do antipsicótico nanoencapsulado foi mantido durante um maior
tempo e os distúrbios motores extrapiramidais foram reduzidos quando comparado com a
administração do fármaco livre, bem como induziu uma melhoria dos marcadores de estresse
oxidativo (BENVEGNÚ et al. 2011; BENVEGNÚ et al. 2012).
As matérias-primas utilizadas nas formulações das NC são de extrema importância,
pois influenciam no desempenho dos nanossistemas, devem ser considerados aspectos
relacionados à toxicidade, via de administração, biocompatibilidade e biodegradabilidade dos
2.4.2 Quitosana
Dentre as matérias-primas que podem ser utilizadas na preparação de NP está a QTS
um polímero de origem natural (HANS & LOWMAN, 2002). A QTS é um polissacarídeo,
unido por ligações β-1,4 entre os açúcares da sua cadeia, com alto grau de N-acetilação.
Apresenta como vantagem, propriedades biológicas dentre elas biocompatibilidade,
biodegradabilidade e bioadesividade. Possui a capacidade de formação de gel o que a elevada
capacidade de adsorção e a biodegradabilidade (FELT, BURI & GURNY, 1998; DASH et al.,
Apresenta cargas positivas, facilitando a interação com componentes de carga
negativa das membranas celulares, auxiliando a permeação do fármaco (HANS &
LOWMAN, 2002). Outra propriedade muito importante é a sua capacidade de se ligar a
moléculas aniônicas, tais como fatores de crescimento, glicanos e DNA (DASH et al., 2011).
Tem sido documentado que NP de QTS têm eficiente encapsulação e liberação
controlada de fármacos. A QTS tem mostrado melhorar a velocidade de dissolução de drogas
fracamente solúveis, e, portanto, pode ser explorada para a melhoria da biodisponibilidade de
fármacos. Vários agentes terapêuticos, tais como quimioterápicos, anti-inflamatórios,
antibióticos, anti-trombótico, esteroides, proteínas, aminoácidos e diuréticos tem sido
incorporados em sistemas à base de QTS (DASH et al., 2011). Estudo com NP de CZP
revestidos com QTS e polissorbato 80 apresentaram melhoria da hidrofilidade de superfície,
facilitando a permeação do fármaco (ISHAK et al., 2013).
2.4.3 Polietilenoglicol
O PEG é o polímero mais comumente utilizado com a finalidade de modificação da
superfície, hidrofílico, não-iônico e biocompatível (HANS & LOWMAN, 2002).
Sistemas nanoparticulados de longa circulação possuem a sua superfície modificada
com PEG, pois esse polímero é capaz de evitar o reconhecimento pelos anticorpos
aumentando o tempo na circulação sistêmica. São capazes de diminuir a captação de fármacos
por órgãos e tecidos pertencentes ao sistema retículo endotelial, como a medula óssea e o
fígado, potencialmente relacionados com a toxicidade da clozapina (MOSQUEIRA et al.,
2001; HANS & LOWMAN, 2002).
Autores demonstraram que este revestimento reduz a captação hepática de NP,
simultaneamente, aumentando sua permanência na circulação (GREF et al.,1994; BAZILE et
al., 1995; CALVO et al., 2001). A engenharia de polímeros de superfície reduz a agregação
de NP e a fagocitose devido à blindagem eficaz do revestimento PEG, dificultando o
reconhecimento pelo sistema retículo endotelial (ISHAK et al., 2013). Devido à conformação
das cadeias de PEG a adsorção de proteínas a superfície das NP é diminuída, com
consequente redução de processos fagocitários (SOPPIMATH et al., 2001).
3 OBJETIVOS
3.1 Objetivo geral
Verificar o efeito do tratamento com nanossistemas contendo clozapina sobre
parâmetros de estresse oxidativo em ratos Wistar.
3.2 Objetivos específicos
- Realizar a análise hematológica e contagem de plaquetas após o tratamento com os
nanossistemas contendo clozapina;
- Quantificar os marcadores bioquímicos para funções cardíaca (CK, CK-MB e
homocisteína), hepática (TGO e TGP) e renal (ureia e creatinina);
- Realizar a análise histopatológica dos órgãos: coração, fígado e rim;
- Determinar o dano oxidativo lipídico em plasma;
- Determinar o dano oxidativo em proteínas plasmáticas;
- Determinar o dano oxidativo no material genético (DNA) em sangue total;
- Determinar a atividade das enzimas antioxidantes CAT, SOD e GPx em eritrócitos;
- Determinar os níveis de GSH em eritrócitos;
- Determinar o dano oxidativo em biomoléculas (lipídios, proteínas e DNA) no
homogenato do cérebro de ratos Wistar após o tratamento com os nanossistemas contendo
MANUSCRITO I
Clozapine linked to nanosystems improves hematological, biochemical and
histopathological parameters in Wistar rats
Angélica Aparecida da Costa Güllich, Ritiéle Pinto Coelho, Muriel Pando Pereira, Bruna
Cocco Pilar, Deise Jaqueline Ströher, Juliana Mezzomo, Leandro Alex Sander Leal Galarça,
Jacqueline da Costa Escobar Piccoli, Vanusa Manfredini
Em fase de preparação para submissão para Journal of Biomedical Nanotechnology
Clozapine linked to nanosystems improves hematological, biochemical and
histopathological parameters in Wistar rats
Angélica Aparecida da Costa Güllicha, Ritiéle Pinto Coelhob, Muriel Pando Pereirab, Bruna
Cocco Pilara, Deise Jaqueline Ströhera, Juliana Mezzomoc, Leandro Alex Sander Leal
Galarçab, Jacqueline da Costa Escobar Piccolia,b,c,d, Vanusa Manfredinia,b,c,*
Affiliation
a Postgraduate Program in Biochemistry, Federal University of Pampa, Uruguaiana, Rio
Grande do Sul, Brazil.
b Course of Pharmacy, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil.
c Postgraduate Lato Sensu Program in Pharmaceutical Scienses, Federal University of Pampa,
Uruguaiana, Rio Grande do Sul, Brazil.
d Postgraduate Program in Pharmaceutical Scienses, Federal University of Pampa,
Uruguaiana, Rio Grande do Sul, Brazil.
* Correspondence should be addressed: Vanusa Manfredini, Universidade Federal do Pampa
– Campus Uruguaiana, Laboratório de Hematologia e Citologia Clínica, BR 472, Km 585,
Uruguaiana, RS, Brazil, CEP: 97500-970. Tel.: (55) 3413-4321. Fax: (55) 3414-1484. E-mail
address: [email protected]
Abstract
Clozapine is an atypical antipsychotic used effectively in refractory schizophrenia . However ,
it has some serious side effects, such as agranulocytosis, cardiomyopathy and sudden death in
some cases, limiting their use. The nanosystems has attracted the attention as pharmaceutical
form able to vectorize the drug directly to target tissue minimizing undesirable effects. This
study aimed to evaluate hematological, biochemical and histopathological profile of different
nanosystems containing clozapine inWistar rats. The study consisted of eight groups of male
Wistar rats (n = 6), animals received the following treatments: saline solution (SAL) (NaCl
0.9% 1.0 mL/Kg i.p.), free clozapine (CZP) (25 mg/Kg i.p.), blank uncoated nanocápsulas
(BNC) (1.0 mL/Kg i.p.), clozapine-loaded uncoated nanocapsules (CNC) (25 mg/Kg i.p.),
blank chitosan-coated nanocapsules (BCSN) (1.0 mL/Kg i.p.), clozapine-loaded chitosan-
coated nanocapsules (CCSN) (25 mg/Kg i.p.), blank polyethyleneglycol-coated nanocapsules
(BPEGN) (1.0 mL/Kg i.p.), clozapine-loaded polyethyleneglycol-coated nanocapsules
(CPEGN) (25 mg/Kg i.p.). The animals received the formulation once a day for seven
consecutive days, being euthanized in the eighth day. It was global blood for hematologic and
biochemical analyzes and organs heart, liver and kidney for histopathological analysis. The
hematologic analysis revealed a significant reduction (p < 0.05) of parameters evaluated
induced by CZP, while the groups treated with nanosystems equate SAL group. However, in
CCN group became evident a significant increase in global count of leukocytes, featuring an
inflammatory process. The evaluation of markers cardiac, hepatic and renal function revealed
a significant increase of parameters evaluated induced by CZP, groups treated with
nanosystems showed significant improvement these markers. Histopathological evaluation
revealed that CZP group is able induce tissue damage, nanosystems a less damage was
observed. The findings show that different coatings can act in diverse and specific way. These
results indicate that the drug when linked to different nanosystems is able to mitigate the
harmful effects of drug.
Keywords: refractory schizophrenia, clozapine, nanosystems, hematological parameters,
biochemical parameters, histopathology.
1 Introduction
Clozapine is an effective atypical antipsychotic used, particularly, in the treatment of
patients with refractory schizophrenia to other neuroleptics. Clozapine is therapeutically
effective, in both positive and negative symptoms. Unlike other neuroleptics, no produces
significant extrapyramidal side effects (JANN, 1991; JANN et al., 1993; SILVA, et al., 2001;
LOUS et al., 2003; ELKIS & MELTZER, 2007; MCILWAIN et al., 2011).
As most drugs administered orally, clozapine is absorbed into systemic circulation by
porta system and undergoes firs-pass metabolism, thus having low oral availability
(SWARTZ, 2001). Metabolized in liver, yields two metabolites, N-desmethylclozapine and
clozapine-N-oxide, which are reactive and can cause cellular damage (BUUR-RASMUSSEN
& BROSEN, 1999).
Reports in literature show that typicals antipsychotics potentiate oxidative stress, and,
although atypicals antipsychotics produce less damage, still have high potential oxidant, such
as clozapine (AGOSTINHO et al., 2007). Some studies also reported that chronic exposure to
clozapine resulted in significant changes in the activity of antioxidant enzymes, and produce
oxidative damage in brain rats (POLYDORO et al., 2004; REINKE et al., 2004).
Clozapine has limited clinical use owing their potential adverse effects, which are
associated, mainly, their reactive metabolites. Among the most serious complications are
granulocytopenia and agranulocytosis. Being that most part hematological complications
clozapine-induced occurs, mainly, during the first three months of therapy, making it
necessary accompaniment of patients with frequent monitoring hematologic (BECHELLI &
CAETANO, 1992; GASZNER, MAKKOS & KOSZA, 2002; DUTT et al., 2010; RAMÍREZ
et al., 2011; MANU et al. , 2012). Another risk associated with clozapine are already
cardiomyopathies, as well as myocarditis may lead to sudden death if not diagnosed quickly
(MERRILL; WILLIAM & GOFF, 2005; MERRILL et al., 2006; WEHMEIER; HEISER &
REMSCHMIDT, 2005; RAMÍREZ et al., 2011; MANU et al. , 2012). Different hypotheses
are considered, however is proposed that myocarditis can be caused by hypersensitivity
reactions reflected in histopathological finding presence of cellular infiltrate characterized by
eosinophils (MERRILL; WILLIAM & GOFF, 2005). Cardiovascular mortality is a major
cause of death in patients with schizophrenia (MERRILL et al., 2006; RAMÍREZ et al.,
2011). Hepatotoxicity also is a risk associated with the drug, studies have reported alterations
in transaminases levels, besides can cause liver failure (HUMMER et al., 1997;
MACFARLANE et al.,1997).
The pharmacotherapeutic profile of this drug makes essential research to increase its
spectrum of use, therefore, to improve their therapeutic application of nanoparticulate systems
can be an alternative to circumvent the limitations this drug (JANN et al., 1993). Advances in
nanotechnology over the past three decades have had significant impact on clinical diagnosis
and therapy (SALATA, 2004). Among the various drug delivery systems nanoparticles,
polymeric nanoparticles have received great attention owing stability (VAUTHIER et al.,
2003). In addition, small size combined with the use of suitable polymers can offer numerous
benefits to nanocoated drugs, some which include vectorization of active drug to target tissue
and/or cell, improved oral bioavailability, controlled release in target tissue, solubilization for
intravascular delivery and protection against enzymatic degradation, especially to stomach
acids (HAIXIONG et al., 2002).
Among the raw materials which can be used in the preparation of nanoparticles is
chitosan (CS) wtih features as bioadhesiveness and biocompatibility, and facilitate interaction
with components of cellular membranes owing their positive charge which help permeation of
drug. Another raw material is polyethylene (PEG) polymer most commonly used for the
purpose of modifying the surface, hydrophilic, biocompatible and non-ionic (HANS &
However, the aim this study was to evaluate the hematological, biochemical and
histopathological profile of different nanosystems containing clozapine in Wistar rats.
2 Material e methods
2.1 Materials and reagents
All chemicals were of analytical grade. All other reagents were purchased from Sigma
Chemical Co. (St. Louis, MO, USA). Kits for analysis of hematological profile and
biochemical markers of cardiac, hepatic and renal function (Labtest, Lagoa Santa - Minas
Gerais, Brazil).
2.2 Experimental animals
This study was approved by the Ethics Committee on Animal Use (CEUA), Federal
University of Pampa (UNIPAMPA) under Protocol nº. 034/2012, which is affiliated to the
Brazilian College of Animal Experimentation (COBEA). Since the experiments were
conducted in accordance with the ethical and technical principles of animal experimentation
established by the National Council for the Control of Animal Experimentation (CONCEA)
and Law nº. 11.794 of 08 October 2008 which establishes procedures for the scientific use of
animals (BRASIL, 2008; 2013).
Were used 48 adult Wistar rats, weighing about 250g, coming from the Bioterio of
Federal University of Santa Maria. The animals remained in the Bioterio of Federal
University of Pampa, Campus Uruguaiana, under standard environmental conditions,
maintained in cabinets with dark/light cycle of 12 hours. They were fed ad libitum diet, this
being appropriate in quantity and quality to maintain their health, with free access to drink
water, ad libitum.
The animals were divided into eight experimental groups consisting of 6 animals each.
The groups were treated as follows: saline solution NaCl 0.9% 1.0 mL/Kg (SAL), free
clozapina 25 mg/Kg (CZP), blank uncoated nanocapsules 1.0 mL/Kg (BNC), clozapine-
loaded uncoated nanocapsules 25 mg/Kg (CNC), blank chitosan-coated nanocapsules 1.0
mL/Kg (BCSN), clozapine-loaded chitosan-coated nanocapsules 25 mg/Kg (CCSN), blank
clozapina-loaded
polyethyleneglycol-coated nanocapsules 25 mg/Kg (CPEGN). The animals received the
formulation once a day for seven consecutive days and euthanized in the eighth day.
The dose of administration of suspensions containing clozapine used was 25 mg/Kg in
a volume of 1.0 mL/Kg and route of administration was intraperitoneal (CANADIAN
COUNCIL ANIMAL CARE, 1993; POLYDORO et al., 2004; REINKE et al., 2004). The
animals receive the formulations once a day, always at the same time, during seven
consecutive days. In the eighth day, the rats were euthanized, the blood was collected and
processed for evaluation of hematological profile and markers cardiac, hepatic and renal
function. The organs were also collected: heart, liver and kidney for histopathological
2.3 Preparation of the suspensions of nanocapsules
The nanocapsules (NC) were prepared using the interfacial precipitation of the
preformed polymer method. The organic phase was constituted with poli(ε-caprolactone),
TCM, Lipoid S45® and CZP dissolved in acetone kept under heating and stirring. This phase
was poured in aqueous phase with polysorbate 80. After the formation of suspension of NC,
the acetone and part of the water are evaporated (1.5 mg/mL of CZP). To obtain the
formulation covered with PEG, this was added to the aqueous phase of the suspension. For the
covering with CS, aqueous acid solution of polysaccharide was added to the NC solution and
kept under constant stirring for a period an hour. Unloaded NC were prepared (BNC).
2.4 Physico-chemical characterization of nanocapsules
The formulations were characterized by the diameter, specific surface area (SPAN)
(Mastersizer, Malvern), Zeta potential (Zetasizer, Malvern), pH, drug content and
encapsulation efficiency (EE) (HPLC-PDA) (BIENIEK et al., 2011).
2.5 Hematological parameters
Blood samples were collected in tubes containing EDTA (Vacutainer - Becton,
Dickinson and Company - New Jersey - USA), and analyzed immediately after collection.
The hemograms, complete blood count (CBC) were performed in an automatic counter Cell-
Dyn 3200 Hematology Analyzer (Abbott Diagnostics, Santa Clara, CA, USA). The evaluation
included an analysis of several hematological parameters such as total count of red blood cells
(RBC), hemoglobin (Hb), absolute erythrocyte indices the mean corpuscular volume (MCV),
mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC),
RDW, hematocrit (Ht), total white cell count (WBC), differential leukocyte count, and
platelet count and mean platelet volume (MPV). Blood smears were prepared and stained by
Kit Panoptic fast (Renylab Chemicals & Pharmaceuticals, Barbacena - Minas Gerais, Brazil).
2.6 Markers function
Blood samples were collected in tubes containing gel without anticoagulant
(Vacutainer - Becton, Dickinson and Company - New Jersey - USA), the samples remained at
room temperature for 30 min to coagulate. Serum was collected after centrifugation at 1500
rpm for 10 min and analyzed immediately.
2.6.1 Markers cardiac function
2.6.1.1 CK and CK-MB analysis
Were evaluated markers of cardiac function creatine kinase (CK) and isoenzyme
creatine kinase (CK-MB) cardiac muscle. The CK and CK-MB analysis were performed using
A25 Biosystems automated analyzer (SA Biosystems, Barcelona, Spain). All assays were
performed in triplicate.
2.6.1.2 Determination of homocysteine levels
The measurement of plasma homocysteine was performed by high efficiency liquid
chromatography coupled to mass spectrometry (LC-MS/MS). The equipment used was a
Waters liquid chromatograph Model 2690 and a mass spectrometer Micromass Four. The
mobile phase used contained acetronitrila/formic acid and the flow rate was used 0.7 mL/min.
Briefly, plasma was mixed with 20μL of internal standard homocystine-d8 (2 nmols) in an
eppendorf tube. Then were added 20μL of reducing solution (dithiothreitol 500 mM) , leaving
to stand for 15 minutes at room temperature. Two hundred microliters of desproteinizante
solution (1 mL of formic acid and 0.5 mL of trifluoroacetic acid in 1L of acetonitrile) were
added and the sample was centrifuged at 3000 rpm for 2 minutes at room temperature. One
hundred microliters of the supernatant was transferred to a vial for injection and finally, 1μL
of the sample was injected into LC-MS/MS using an autosampler maintained at 4°C for the
detection and quantification of plasma homocysteine . The peak transition of homocysteine
and homocysteine-d8 occur respectively at m/z 136 to m/z 90 and m/z 140 to m/z 94. A
calibration curve was prepared in parallel from a solution of D,L- homocysteine 200μM,
obtaining the following concentrations : 2.5, 5.0, 10.0 , 25.0, 50.0 and 100.0 μM, to allow
measurement of homocysteine in the sample (NELSON et al. 2003). All assays were
performed in triplicate.
2.6.2 Markers hepatic function: GOT and GPT analysis
Markers of liver function Glutamic Oxaloacetic Transaminase (GOT) and Glutamic
Pyruvic Transaminase (GPT) were evaluated. Analyses were performed using automated
analyzer A25 Biosystems (Biosystems SA, Barcelona, Spain). All assays were performed in
2.6.3 Markers renal function: urea and creatinine analysis
Markers urea and creatinine renal function were evaluated. Analyses were performed
using automated analyzer A25 Biosystems (Biosystems SA, Barcelona, Spain). All assays
were performed in triplicate.
2.7 Histopathological analysis
After seven days of treatment, the animals were euthanized and the thoracic abdominal
cavity was opened. The heart, liver and kidney were excised each animal. The organs were
rapidly dissected and tissue sections (5 mm) fixed by immersion at room temperature in 10%
formalin solution. For the histological examinations, paraffin embedded tissue sections of
aorta were stained with hematoxylin-eosin (H&E). The tissue samples were for examined and
photographed under a light microscope for observation of structural abnormality.
2.8 Statistical analysis
Data were expressed as mean ± standard deviation (SD). Comparisons between groups
were performed using a two-way analysis of variance (ANOVA), followed by post hoc of
Bonferroni for multiple comparison tests. Results were considered statistically significant
when p<0.05. The statistical analysis was performed using the software GraphPad Prism
version 5 (GraphPad Software, Inc., La Jolla, CA, USA).
3 Results
The formulations containing CZP showed a pH higher than the formulations without
drug. BNC and CNC group showed a similar diameter of 139 ± 1 and 137 ± 2 nm
respectively. BPEGN and CPEGN group showed different values, 140 ± 1 and 142 ± 1 nm,
respectively, the same was observed to BNCS and CCSN group, 135 ± 2 and 141 ± 1,
respectively. All formulation showed SPAN values inferior to 1.5. The zeta potential was
negative for all formulation, except those covered with CS. CNC and CPEGN group
presented drug content near 100% and the EE was above 95%, but around 70% for CCSN
Values (mean ± SD) of particle mean diameter (D[4,3], nm), SPAM, zeta potential (mV) and pH of clozapine
nanoformulations (n = 3 batches)
SPAN ± DP
Zeta potential
Formulation
a Difference between BNC x CNC (p < 0.05) b Difference between BCSN x CCSN (p < 0.05) c Difference between BPEGN x CPEGN (p < 0.05)
The results of several hematological parameters evaluated are shown in figures
following (Figure 1, Figure 2 and Figure 3).
The findings demonstrated that CZP group had significantly decreased values (p <
0.05) compared to SAL group for RBC, as well as Hb and Ht indicates the cytotoxic potential
of drug (Figure 1A, 1B and 1C, respectively). The groups treated with nanossystems got
better and significant results for RBC and Hb compared to CZP group. The nanocapsules
coated with CS and PEG were statistically different of uncoated nanocapsules, obtaining
better results for RBC. In Hb parameter coating with PEG got better performance. However,
the groups that received nanocapsules showed a significant decrease in Ht. Figure 1D shows
the MCV values for all treated groups were significantly different compared to SAL group,
but was only BPEGN was statistically different of CZP group. Figure 1E shows values for
MCH, as BNC as CPEGN and nanocapsules coated with CS were significantly different of
SAL group. All treated groups nanosystems were statistically different of CZP group. Figure
1F shows values for MCHC as BNC as BCSN and BPEGN differed significantly of SAL and
CZP group, already CPEGN group differ only CZP group. Finally, in Figure 1G are values for
RDW where BCSN group was statistically diferent of SAL and CZP group, and BPEGN
group different only CZP group.
FIGURE 1 - Hematological parameters of red blood cells in Wistar rats exposed to different nanosystems treatments. In A: values for RBC; B: values for Hb; C: values for Ht; D: values for MCV; E: values for MCH; F: values for MCHC; G: values for RDW. SAL: saline solution; CZP: clozapine free; BNC: blank uncoated nanocapsules; CNC: clozapine-loaded uncoated nanocapsules; BCSN: blank chitosan-coated nanocapsules; CCSN: clozapine-loaded chitosan-coated nanocapsules; BPEGN: blank polyethyleneglycol-coated nanocapsules; CPEGN: clozapina-loaded polyethyleneglycol-coated nanocapsules. a Significantly different SAL (p < 0.05); b Significantly different CZP (p < 0.05); c Significantly different BNC and CNC (p < 0.05); d Significantly different BCSN and CCSN (p < 0.05).
The values for WBC and differential leukocyte counts are shown in Figure 2. CZP
group had parameters significantly decreased (p <0.05) for WBC, as well as neutrophilic,
monocytic and lymphocytic series, however a significant increase was observed for
eosinophilic serie (Figure 2A, Figure 2B, Figure 2C and Figure 2D, respectively). All groups
treated with nanosystems got better and significant results when compared with CZP group
for WBC, the nanocapsules coated CS and PEG were statistically different of uncoated
nanocapsules getting better results, coat with CS was the best performance (Figure 2A). All
groups treated with nanosystems were significantly different when compared to CZP group
for differential count of neutrophils, the nanocapsules coated with PEG had a significant
increased of neutrophilic serie and significantly different of the others and nanocapsules
(Figure 2B). All treated groups, except BPEGN group, had significantly decreased values
lymphocytic serie when compared with SAL group. Except CCSN group, all groups treated
with nanosystems had better results than CZP group to lymphocytic serie (Figure 2C). The
group that received CS-coated nanocapsules showed an increase in monocytic and basophilic
series significantly higher than SAL and CZP groups, as well as differed significantly of the
other nanocapsules (Figure 2D and Figure 2F). All groups were treated with nanosystems
were significantly different when compared with SAL and CZP groups in eosinophilic series,
CPEGN group showed an increase in eosinophilic series significantly higher compared to the
other groups (Figure 2E).
FIGURE 2 - Hematological parameters of white blood cells in Wistar rats exposed to different nanosystems treatments. In A: values for WBC; B: values for Neutrophils; C: values for Lymphocytes; D: values for Monocytes; E: values for Eosinophils; F: values for Basophils. SAL: saline solution; CZP: clozapine free; BNC: blank uncoated nanocapsules; CNC: clozapine-loaded uncoated nanocapsules; BCSN: blank chitosan-coated nanocapsules; CCSN: clozapine-loaded chitosan-coated nanocapsules; BPEGN: blank polyethyleneglycol-coated nanocapsules; CPEGN: clozapina-loaded polyethyleneglycol-coated nanocapsules. a Significantly different SAL (p < 0.05); b Significantly different CZP (p < 0.05); c Significantly different BNC and CNC (p < 0.05); d Significantly different BCSN and CCSN (p < 0.05).
The global parameters MPV and platelet count are shown in Figure 3. All treatment
groups were significantly different when compared to SAL group. The uncoated
nanocápsulas, coated with CS and BPEGN groups were significantly different when
compared to CZP group (Figure 3A). BNC and CCSN group were significantly different SAL
and CZP groups. BCSN group showed differences only CZP group. Nanocapsules coated
with CS were different of the other nanosystems (Figure 3B).
FIGURE 3 - Hematological parameters of plaquets in Wistar rats exposed to different nanosystems treatments. In A: values for Plaquets; B: values for MPV. SAL: saline solution; CZP: clozapine free; BNC: blank uncoated nanocapsules; CNC: clozapine-loaded uncoated nanocapsules; BCSN: blank chitosan-coated nanocapsules; CCSN: clozapine-loaded chitosan-coated nanocapsules; BPEGN: blank polyethyleneglycol-coated nanocapsules; CPEGN: clozapina-loaded polyethyleneglycol-coated nanocapsules. a Significantly different SAL (p < 0.05); b Significantly different CZP (p < 0.05); c Significantly different BNC and CNC (p < 0.05); d Significantly different BCSN and CCSN (p < 0.05).
The results for CK, CK-MB and homocysteine analysis are shown in Figure 4. The
result for CK showed that there was a significant increase (p < 0.05) in all treated groups
when compared with SAL group, however all groups treated with nanosystems showed a
significant improvement when compared CZP group, being nanocapsules with CS-coated the
best performance (Figure 4A). CK-MB there was a significant increase induced by CZP
group, the groups treated with different nanosystems showed a significant improvement in the
CK-MB, and groups treated with nanocapsules uncoated and CS-coated the best results
(Figure 4B). The results for homocysteine there was a significant increase induced by CZP
group, however when linked to the nanosystems there was a significant decrease in these
levels, again the group treated with CS-coated nanocapsules had better results (Figure 4C).
FIGURE 4 – Markers cardiac function in Wistar rats exposed to different nanosystems treatments. In A: values for CK; B: values for CK-MB; C: values for Homocysteine. SAL: saline solution; CZP: clozapine free; BNC: blank uncoated nanocapsules; CNC: clozapine-loaded uncoated nanocapsules; BCSN: blank chitosan-coated nanocapsules; CCSN: clozapine-loaded chitosan-coated nanocapsules; BPEGN: blank polyethyleneglycol-coated nanocapsules; CPEGN: clozapina-loaded polyethyleneglycol-coated nanocapsules. a Significantly different SAL (p < 0.05); b Significantly different CZP (p < 0.05).
The results for GOT and GPT are showed in Figure 5. The result for GOT demonstrate
that there was a significant increase (p < 0.05) of the parameters evaluated induced by CZP
group, as well as for GPT (Figure 5A, Figure 5B, respectively). All groups treated with
nanossystems showed a significant improvement in markers liver function in relation to CZP
group. The group treated with CS-coated nanocapsules obtained better results.
FIGURE 5 – Markers hepatic function in Wistar rats exposed to different nanosystems treatments. In A: values for GOT; B: values for GPT. SAL: saline solution; CZP: clozapine free; BNC: blank uncoated nanocapsules; CNC: clozapine-loaded uncoated nanocapsules; BCSN: blank chitosan-coated nanocapsules; CCSN: clozapine-loaded chitosan-coated nanocapsules; BPEGN: blank polyethyleneglycol-coated nanocapsules; CPEGN: clozapina-loaded polyethyleneglycol-coated nanocapsules. a Significantly different SAL (p < 0.05); b Significantly different CZP (p < 0.05).
The results for the analysis of urea and creatinine are showed in Figure 6. The results
of treated groups to urea is present similar to SAL and CZP group suggesting that
nanoparticles systems are not nephrotoxic, with the exception of the groups treated with nano-
coated with CS (Figure 6A). For creatinine results were significantly decreased compared to
SAL group, as well as groups receiving uncoated nanocápsulas, coated with PEG and CCNS
were significantly decreased compared CZP group (Figure 6B).
FIGURE 6 – Markers renal function in Wistar rats exposed to different nanosystems treatments. In A: values for Urea; B: values for Creatinine. SAL: saline solution; CZP: clozapine free; BNC: blank uncoated nanocapsules; CNC: clozapine-loaded uncoated nanocapsules; BCSN: blank chitosan-coated nanocapsules; CCSN: clozapine-loaded chitosan-coated nanocapsules; BPEGN: blank polyethyleneglycol-coated nanocapsules; CPEGN: clozapina-loaded polyethyleneglycol-coated nanocapsules. a Significantly different SAL (p < 0.05); b Significantly different CZP (p < 0.05).
In Figure 7 are showed images of histopathological findings of heart, the histological
evaluation revealed that the group receiving CZP had significant changes in organ, as heart
congestion and relaxation of cells cardiac.
FIGURE 7 – Histopathological analysis of heart in Wistar rats exposed to different nanosystems treatments. In A: SAL group; B: CZP group; C: BNC group; D: CNC group; E: BCSN group; F: CCSN group; G: BPEGN group; H: CPEGN group. SAL: saline solution; CZP: clozapine free; BNC: blank uncoated nanocapsules; CNC: clozapine-loaded uncoated nanocapsules; BCSN: blank chitosan-coated nanocapsules; CCSN: clozapine-loaded chitosan-coated nanocapsules; BPEGN: blank polyethyleneglycol-coated nanocapsules; CPEGN: clozapina-loaded polyethyleneglycol-coated nanocapsules.
In Figure 8 are showed images of histopathological findings of the liver. The
histological evaluation revealed that the group receiving CZP had significant changes in
organ, as liver necrosis.
FIGURE 8 – Histopathological analysis of liver in Wistar rats exposed to different nanosystems treatments. In A: SAL group; B: CZP group; C: BNC group; D: CNC group; E: BCSN group; F: CCSN group; G: BPEGN group; H: CPEGN group. SAL: saline solution; CZP: clozapine free; BNC: blank uncoated nanocapsules; CNC: clozapine-loaded uncoated nanocapsules; BCSN: blank chitosan-coated nanocapsules; CCSN: clozapine-loaded chitosan-coated nanocapsules; BPEGN: blank polyethyleneglycol-coated nanocapsules; CPEGN: clozapina-loaded polyethyleneglycol-coated nanocapsules.
In Figure 9 are showed images of the histopathologic findings of kidney. The
histological revealed that the group which had received CZP significant changes in organ, as
an increased cell volume, tubular degeneration, increasing the scapular area, necrosis and
glomerular death.
FIGURE 9 – Histopathological analysis of kidney in Wistar rats exposed to different nanosystems treatments. In A: SAL group; B: CZP group; C: BNC group; D: CNC group; E: BCSN group; F: CCSN group; G: BPEGN group; H: CPEGN group. SAL: saline solution; CZP: clozapine free; BNC: blank uncoated nanocapsules; CNC: clozapine-loaded uncoated nanocapsules; BCSN: blank chitosan-coated nanocapsules; CCSN: clozapine-loaded chitosan-coated nanocapsules; BPEGN: blank polyethyleneglycol-coated nanocapsules; CPEGN: clozapina-loaded polyethyleneglycol-coated nanocapsules.
However, our findings suggest that when clozapine is linked to different nanosystems,
the treated groups have less tissue damage in organs heart, liver and kidney.
4 Discussion
The results obtained for hematological parameters demonstrated that clozapina is a
drug able to generate damage in cellular level corroborating findings in the literature
(BECHELLI & CAETANO, 1992; BUUR-RASMUSSEN & BROSEN, 1999; GASZNER,
MAKKOS & KOSZA, 2002). Decreased levels of hemoglobin may feature anemia confirmed
by severe decrease in RBC and associated with decreased hematocrit levels.
Furthermore, CZP group had severe leukopenia indicating that hematopoiesis is
suppressed, which contributes to severe neutropenia, lymphopenia and monocytopenia found
CZP group. Reports in the literature mention neutropenia and agranulocytosis as risk
associated with the use of CZP, but the mechanisms that lead to changes white blood cells are
not fully understood, making a focus of concern during treatment with this antipsychotic
(ATKIN et al., 1996; LAMBERTENGHI, 2000; WULFF, 2007; DUTT et al., 2010; PONS et
However, it was observed that the group treated with CS-coated nanocapsules had a
severe leukocytosis compared SAL group suggest an inflammatory process, characterized by
lymphopenia suggesting a depression of the immune system, confirmed by monocyte acting
as second line of defense organism, in addition basophilia.
This condition can be caused owing CS, although is a natural and biodegradable
polymer is not absorbed in the intestine (NASCIMENTO et al , 2001; . HANS & LOWMAN,
2002; SILVA et al , 2006). According studies among mammals, humans are rare example
where specific chitinases are ausent. Thus, it is not possible hydrolyze the chitosan
extensively, had only partial hydrolysis by bacteria of normal flora and non-specific
hydrolases. This feature has to be interesting characteristic because, polymer is cationic, it is
soluble in the stomach (pH range 1-3), however, precipitates in the intestine (pH 6.5). This
physical- chemical characteristic is the key point in the mechanism of chitosan, because it
interferes with the emulsification of lipids in the stomach and reaching the intestine, owing
precipitation, the complex is not absorbed (SILVA et al., 2006).
Neutropenia, granulocytopenia or extreme, agranulocytosis, can result in decreased
production or use of accelerated granulocytes. However, the most common cause neutropenia
is induced by drugs and toxic agents, such as clozapina, so the data is consistent with other
work that demonstrated that granulocytopenia one of the most devastating side effects caused
by clozapine occurring immediately the first weeks of treatment (GASZNER; MAKKOS &
KOSZA, 2002). Despite the variety of proposed hypotheses, the exact mechanism of
clozapine -induced granulocytopenia and agranulocytosis is unknown, although some studies
suggest that there is a direct myelotoxic effect and antibodies against myeloid cells and
mature granulocytes (CLAAS, 1989). A potential mechanism involves the metabolic
activation of clozapine by free radicals generated by peroxidase, or genetic factors may be
involved in the etiology of agranulocytosis. Other adverse reactions hemopoietic as
thrombocytopenia may occur rarely (GASZNER; MAKKOS & KOSZA, 2002).
It has been hypothesized that activation of metabolites of CZP may cause neutropenia
and/or agranulocytosis, causing cell death by oxidative stress-induced apoptosis and, finally,
directly targeting stromal cells of bone marrow (PIRMOHAMED & PARK, 1997; HUSAIN
et al., 2006; PEREIRA & DEAN, 2006; FLANAGAN & DUNK, 2008).
The evaluation of complete blood count and platelet count for the groups treated with
nanosystems revealed that polymerics nanocapsules can leave hematopoietic parameters to
normalized levels.
The evaluation of markers cardiac function revealed that there was a significant
increase (p < 0.05) of the evaluated parameters induced by CZP. These results corroborate the
literature where most of the effects of the drug occurs in the first weeks of treatment
(MERRILL; WILLIAM & GOFF, 2005; MERRILL et al., 2006; WEHMEIER; HEISER &
REMSCHMIDT, 2005; RAMÍREZ et al., 2011). The groups treated with different
nanosystems containing clozapine showed a significant improvement in markers cardiac
function, and the group treated nanosystems containing clozapine CS-coated had better
results. These results demonstrate that the drug when linked to nanosystems is able to mitigate
the harmful effects of drug making safer.
Studies suggest that homocysteine levels is significantly elevated in the plasma of
patients with schizophrenia, clozapine having an oxidant potential can act in the formation of
reactive species, which in excess can further contribute to the increased homocysteine levels
as well as aspects the specific schizophrenic symptoms and complications of their treatment
(DIETRICH-MUSZALKA, A. et al., 2012). The data show that clozapine induced a
significant increase in the levels of homocysteine and when bound to nanoparticles had
decreased their level indicating the effectiveness of nanosystems.
The markers of renal function GOT and GPT levels were significantly increased in the
group receiving CZP, which was expected because CZP is a drug which undergoes extensive
first-pass metabolism and is metabolized almost exclusively in liver (HUMMER et al., 1997;
MACFARLAN et al.,1997; CHANG et al., 2009). The groups treated with different
nanosystems containing clozapine showed a significant improvement in markers liver
function in relation to CZP group. Again the group treated with CS-coated nanocapsules
obtained better results.
Marker renal urea the results of groups are similar SAL group suggesting that the
nanoparticle systems were not nephrotoxic. The CS-coated nanocapsules showed a significant
increase in the levels of urea. For the results of creatinine were significantly reduced
compared SAL group suggesting that nanoparticle systems are not nephrotoxic because of
decreased creatinine values have no clinical significance. Although our findings were not
found impairment in renal function induced by CZP, reports in the literature show that the
drug can cause urinary incontinence can be potentially able reduce bladder tone of the internal
sphincter (HANES et al., 2013).
The findings show that different coatings can act in diverse and specific way each
organ or tissue through which possess higher affinity.
Histological evaluation revealed that our findings corroborate the literature indicating
that clozapina is a drug able of inducing tissue damage, but our histological evaluation
showed that when clozapine is linked to different nanosystems is able to mitigate the harmful
effects and reduce the damage to tissue level (KELLY et al., 2009; RAMIREZ et al., 2011).
5 Conclusion
Our findings demonstrated that clozapine when nanoencapsuladed showed better and
significant results, suggesting that the nanosystems are able to mitigate the harmful effects of
drug. Different coatings used in the formulations can act in diverse and specific way for each
organ or tissue which has highest affinity. However, it was concluded that the nanosystems
have a safe toxicological profile which combined with its effectiveness indicate a potential to
establish clinical benefits as an effective therapy against refractory schizophrenia.
Nanomedicine can be an alternative to the administration of clozapine and its
Nanoencapsulation in polymeric systems is a promising therapeutic tool to be further
Conflicts of interest statement
All authors report no conflict of interest.
References
AGOSTINHO, F. R. et al. Effects of chronic haloperidol and/or clozapine on oxidative stress
parameters in rat brain. Neurochemistry Research, v.32, p. 1343-50, 2007.
ATKIN, K. et al. Neutropenia and agranulocytosis in patients receiving clozapine in the UK
and Ireland. The British Journal of Psychiatry, v. 169, p. 483-8, 1996.
BECHELLI, P. C. & CAETANO, D. Clozapina um neuroléptico atípico: propriedades
farmacológicas e uso terapêutico. Jornal Brasileiro de Psiquiatria, v. 41, supl. 1, p. 45-135,
1992.
BIENIEK. D. D. et al. Validação de metodologia analítica por cromatografia líquida de alta
eficiência para doseamento de clozapina em nanopartículas poliméricas. Perspectiva,
Erechim, v. 35, n.129, p. 17-26, 2011.
BRASIL. Lei nº 11.794, de 08 de Outubro de 2008. Regulamenta o inciso VII do § 1o do art.
225 da Constituição Federal, estabelecendo procedimentos para o uso científico de animais;
revoga a Lei no 6.638, de 8 de maio de 1979; e dá outras providências. Disponível em:
<http://www.planalto.gov.br/ccivil_03/_Ato2007-2010/2008/Lei/L11794.htm>. Acessado em:
21 de maio de 2013.
BRASIL. Ministério da Ciência, Tecnologia e Inovação Conselho Nacional de Controle de
Experimentação Animal – CONCEA. Diretriz Brasileira para o cuidado e a utilização de
animais para fins científicos e didáticos – DBCA. Brasília-DF, 2013.
BUUR-RASMUSSEN, B. & BROSEN, K. Cytochrome P450 and therapeutic drug
monitoring with respect to clozapine. European Neuropsychopharmacology, v. 9, p. 453-9,
1999.
CANADIAN COUNCIL ANIMAL CARE. Guide to the Care and Use of experimental
Animals, 1993. Disponível em:
<http://www.ccac.ca/Documents/Standards/Guidelines/Experimental_Animals_Vol1.pdf>.
Acessado em: 10 de maio de 2012.
CHANG, A.; et al. Clozapine-induced fatal fulminant hepatic failure: A case report.
Canadian Journal of Gastroenterology, v. 23, supl. 5, p.376-8, 2009.
CLAAS, F. Drug-induced agranulocytosis: review of possible mechanism, and prospect for
clozapine studies. Psychopharmacology, v. 99, p. 113-7, 1989.
DIETRICH-MUSZALKA, A. et al. The oxidative stress may be induced by the elevated
homocysteine in schizophrenic patients. Neurochemistry Research, v. 37, p.1057-62, 2012.
DUTT, A. et al. Effectiveness of clozapine: A study from North India. Asian Journal of
Psychiatry, v. 3, p. 16-9, 2010.
ELKIS, H. & MELTZER, H. Y. Esquizofrenia refratária. Revista Brasileira de Psiquiatria,
v. 29, supl. II, p.S41-7, 2007.
FLANAGAN, R. & DUNK, L. Haematological toxicity of drugs used in psychiatry.
Human Psychopharmacology: Clinical and Experimental, v. 23, p. 27-41, 2008.
GASZNER, P.; MAKKOS, Z. & KOSZA, P. Agranulocytosis during clozapine therapy.
Progress in Neuro-Psychopharmacology & Biological Psychiatry, v. 26, p. 603-7, 2002.
HAIXIONG, G. et al. Preparation, characterization, and drug release behaviors of drug
nimodipine-loaded poly (e-caprolactone)–poly (ethylene oxide)–poly ecaprolactone)
amphiphilic triblock copolymer micelles. Journal of Pharmaceutical Sciences, v. 91, p.
1463-73, 2002.
HANES, A.; et al.Pseudoephedrine for the Treatment of Clozapine-Induced Incontinence.
Innovations in Clinical Neuroscience, v.10, supl. 4, p. 33-5, 2013.
HANS, M. L. & LOWMAN, A. M. Biodegradable nanoparticles for drug delivery and
targeting. Current Opinion in Solid State and Materials Sciences, v. 6, p. 319-327, 2002.
HUMMER, M. et al. Hepatotoxicity of clozapine. Journal of Clinical
Psychopharmacology, v. 17, p. 314–317, 1997.
HUSAIN, Z.; et al. Increased FasL expression correlates with apoptotic changes in
granulocytes cultured with oxidized clozapine. Toxicology and Applied Pharmacology, v.
214, p. 326-34, 2006.
JANN, M. W. Clozapine. Pharmacotherapy, v. 11, supl. 3, p. 179-95, 1991.
JANN, M. W. et al. Pharmacokinetics and pharmacodynamics of clozapine. Clinical
Pharmacokinetics, v. 24, supl. 2, p. 161-76, 1993.
KELLY et al. Cardiac-related findings at autopsy in people with severe mental illness
treated with clozapine or risperidone. Schizophrenia Research, v. 107, p. 134-8, 2009.
LAMBERTENGHI, G. Blood dyscrasias in clozapinetreated patients in Italy.
Haematologica, v. 85, p. 233-7, 2000.
LOUS, J. A. E. D. V. T. et al. CYP1A2 activity is an important determinant of clozapina
dosage in schizophrenic patients. European Journal of Pharmaceutical Sciences, v. 20,
451-7, 2003.
MACFARLANE, B. et al. Fatal acute fulminant liver failure due to clozapine: a case report
and review of clozapine-induced hepatotoxicity. Gastroenterology, v. 112, p. 1707-9, 1997.
MANU, P. et al. When can patients with potentially life-threatening adverse effects be
rechallenged with clozapine? A systematic review of the published literature. Schizophrenia
Research, v. 134, p. 180-6, 2012.
MCILWAIN, M. E. et al. Pharmacotherapy for treatment-resistant Schizophrenia.
Neuropsychiatric Disease and Treatment, v. 7, p. 135-49, 2011.
MERRILL, D. B.; WILLIAM, G. W. & GOFF, D. C. Adverse cardiac effects associated with
clozapine. Journal of Clinical Psychopharmacology, v. 25, supl.1, p. 32-41, 2005.
MERRILL, D. B. et al. Myocarditis during clozapina treatment. American Journal of
Psychiatry, v. 163, p. 204-8, 2006.
NASCIMENTO A. et al. Impregnation and release of aspirin from chitosan/poly(acrylic acid)
graft copolymer microspheres. Journal of Microencapsulation,v. 3, n. 5 p. 679-84, 2001.
NELSON, B. et al. Development and evaluation of an isotope dilution LC/MS method for the
determination of total homocysteine in human plasma. Analytical Chemistry, v.75, n.4,
p.775-84, 2003.
PEREIRA, A. & DEAN, B. Clozapine bioactivation induces dose dependent, drug-specific
toxicity of human bone marrow stromal cells: a potential in vitro system for the study of
agranulocytosis. Biochemical Pharmacology, v. 72, p. 783-93, 2006.
PIRMOHAMED, M. AND PARK, K. Mechanism of clozapine-induced agranulocytosis.
Current status of research and implications for drug development. CNS Drugs, v. 7, p. 139-
58, 1997.
POLYDORO, M. et al. Haloperidol- and clozapine-induced oxidative stress in the rat brain.
Pharmacology Biochemistry and Behavior, v. 78, p. 751-6, 2004.
PONS et al. Clozapine and agranulocytosis in Spain: Do we have a safer population? A 5-year
haematologic follow-up. Revista de Psiquiatría y Salud Mental, v. 5, supl. 1, p. 37-42,
2012.
RAMÍREZ, J. J. C. et al., Miocarditis por clozapina: reporte de caso y revisión de tema.
Revista Colombiana de Psiquiatria, v. 40, n. 1, 2011.
REINKE, A., et al. Haloperidol and clozapine, but not olanzapine, induces oxidative stress in
rat brain. Neuroscience Letters, v. 372, p. 157-60, 2004.
SALATA, O. Applications of nanoparticles in biology and medicine. Journal
of Nanobiotechnology, v. 2, p. 3–9, 2004.
SILVA, C. E. R. et al. Estudo-piloto com clozapina em hospital público: resultados de um ano
de acompanhamento. Revista Brasileira de Psiquiatria, v. 23, p.4, 2001.
SWARTZ, M. A. The physiology of the lymphatic system. Advanced Drug
Delivery Reviews, v. 50, p. 3-20, 2001.
VAUTHIER, C. et al. Drug delivery to resistant tumors: the potential of poly (alkyl
cyanoacrylate) nanoparticles. Journal of Controlled Release, v. 93, p. 151-60, 2003.
WEHMEIER, P. M.; HEISER, P. & REMSCHMIDT, H. Myocarditis, pericarditis and
cardiomyopathy in patients treated with clozapine. Journal of Clinical Pharmacology and
Therapeutics, v. 30, supl. 1, p. 91-6, 2005.
WULFF, C. M. Clozapina, neutropenia y test de prednisona. Revista Chilena de Neuro-
Psiquiatría, v. 45, supl. 2, p. 114-9, 2007.
MANUSCRITO II
Clozapine linked to nanosystems improves oxidative stress parameters in Wistar rats
Angélica Aparecida da Costa Güllich, Ritiéle Pinto Coelho, Muriel Pando Pereira, Bruna
Cocco Pilar, Deise Jaqueline Ströher, Juliana Mezzomo, Leandro Alex Sander Leal Galarça,
Jacqueline da Costa Escobar Piccoli, Vanusa Manfredini
Em fase de preparação para submissão para European Journal of Pharmaceutical Sciences
Clozapine linked to nanosystems improves oxidative stress parameters in Wistar rats
Angélica Aparecida da Costa Güllicha, Ritiéle Pinto Coelhob, Muriel Pando Pereirab, Bruna
Cocco Pilara, Deise Jaqueline Ströhera, Leandro Alex Sander Leal Galarçab, Jacqueline da
Costa Escobar Piccolia,b,c,d, Vanusa Manfredinia,b,c,*
Affiliation
a Postgraduate Program in Biochemistry, Federal University of Pampa, Uruguaiana, Rio
Grande do Sul, Brazil.
b Course of Pharmacy, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil.
c Postgraduate Lato Sensu Program in Pharmaceutical Scienses, Federal University of Pampa,
Uruguaiana, Rio Grande do Sul, Brazil.
d Postgraduate Program in Pharmaceutical Scienses, Federal University of Pampa,
Uruguaiana, Rio Grande do Sul, Brazil.
* Correspondence should be addressed: Vanusa Manfredini, Universidade Federal do Pampa
– Campus Uruguaiana, Laboratório de Hematologia e Citologia Clínica, BR 472, Km 585,
Uruguaiana, RS, Brazil, CEP: 97500-970. Tel.: (55) 3413-4321. Fax: (55) 3414-1484. E-mail
address: [email protected]
Abstract
Free radicals are oxidants agents highly reactive that in excess can react with lipids of
membranes, proteins and genetic material being associated with various diseases such as
schizophrenia, where occurs deregulation of metabolism these reactive species.
Antipsychotics can potential oxidative stress, such as clozapine. Used as treatment of choice
in refractory schizophrenia has clinical therapy is limited owing their side effects associated
with their reactive metabolites. The feasibility of drug delivery for action in the brain using
polymeric nanocapsules can open new perspectives for the treatment of schizophrenia,
particularly to possibility minimize of oxidative damage, thus reducing the adverse effects of
the drug. This study aimed to evaluate oxidative damage of biomolecules lipids, proteins and
DNA and antioxidant defenses in Wistar rats after treatment with nanosystems containing
clozapine. The study consisted of eight groups of male Wistar rats (n = 6), animals received
the following treatments: saline solution (SAL) (NaCl 0.9% 1.0 mL/Kg i.p.), free clozapine
(CZP) (25 mg/Kg i.p.), blank uncoated nanocápsulas (BNC) (1.0 mL/Kg i.p.), clozapine-
loaded uncoated nanocapsules (CNC) (25 mg/Kg i.p.), blank chitosan-coated nanocapsules
(BCSN) (1.0 mL/Kg i.p.), clozapine-loaded chitosan-coated nanocapsules (CCSN) (25 mg/Kg
i.p.), blank polyethyleneglycol-coated nanocapsules (BPEGN) (1.0 mL/Kg i.p.), clozapine-
loaded polyethyleneglycol-coated nanocapsules (CPEGN) (25 mg/Kg i.p.). The animals
received the formulation once a day for seven consecutive days and euthanized in the eighth
day. After euthanasia global blood was collected and immediately processed for further
analysis. Lipid peroxidation analyses showed a significant increase ( p < 0.05 ) induced by
CZP and CS indicating lipid membrane damage, CNC and CPEGN groups had a reduction in
lipid peroxidation levels indicating the protective character of nanosystems, better
performance was obtained for CNC group. The carbonylation of proteins was induced by
CZP, while the nanosystems-treated groups showed a significant improvement in these levels
suggesting protective character nanosystems to protein damage, PEG coating showed better
results. CZP group was able to induce oxidative genetic damage, while nanocapsules
conferred a protective character causing less damage to DNA, PEG again better performance.
The frequency of micronucleus showed damage induced by CZP and CNC group, other
groups had a significant reduction in damage. A significant improvement of the antioxidant
enzymes SOD, CAT and GPx, the best performance was CS-coated, similar results were
obtained for GSH levels. The findings show that different coatings may confer a protective
character, minimizing lipid, protein and genetic damage caused by the drug. These results
indicate that the drug nanoencapsuladed is a useful alternative to mitigate the harmful effects
of CZP.
Keywords: refractory schizophrenia, clozapine, nanosystems, oxidative stress, lipid
peroxidation, protein carbonylation, genetic damage, antioxidant defenses.
1 Introduction
Free radicals are oxidants agents highly reactive that in excess can react with
membrane lipids, proteins and genetic material being associated with various diseases such as
schizophrenia, carcinogenesis, neurological dysfunction, pulmonary, autoimmune diabetes
and vascular (TOURÉ & XUEMING, 2010). In schizophrenic patients occurs deregulation of
metabolism of reactive oxygen species and nitrogen (REDDY & YAO, 1996; YAO et al.,
1998; DIETRICH-MUSZALKA, OLAS & RABE-JABLONSKA, 2005).
Antipsychotics may potential oxidative stress, studies have showed that clozapine has
oxidant potential. Chronic exposure to clozapine resulted in significant reduction in the
activity of antioxidant enzymes, and produce oxidative damage in different structures of rat
brain (POLYDORO et al., 2004; REINKE et al., 2004; AGOSTINHO et al., 2007).
Clozapine is the treatment of choice in refractory schizophrenia owing to be effective
in both positive and negative symptoms. However, the clinical therapy is limited owing their
side effects associated with their reactive metabolites (JANN, 1991; JANN et al., 1993;
SILVA, et al., 2001; LOUS et al., 2003; ELKIS & MELTZER, 2007; MCILWAIN et al.,
2011). Studies have reported that activation of metabolites can CZP cell death by oxidative
stress (PIRMOHAMED & PARK, 1997; HUSAIN et al., 2006; PEREIRA & DEAN, 2006;
FLANAGAN & DUNK, 2008).
In this context, one of the hypotheses involving oxidative stress and CZP is the
potential mechanism involving metabolic activation of CZP by free radicals generated by
peroxidase, or genetic factors (GASZNER, MAKKOS & KOSZA, 2002).
The feasibility of administering drugs, with action in the brain, using polymeric
nanocapsules can open new perspectives for the treatment of schizophrenia, especially the
possibility of biological activity at low doses (MUTHU et al. 2009). Studies describe the
enormous usefulness of nanoparticle therapeutic systems, but studies of security these systems
are still limited and should be further studied as oxidative damage. Some of the properties of
these systems that proven therapeutic benefits can lead to cellular accumulation and toxicity
in long time (LANDSIEDEL et al., 2009; SINGH et al., 2009).
However, the aim this study was to evaluate oxidative damage of biomolecules lipids,
proteins and DNA and antioxidant defenses in Wistar rats after treatment with nanosystems
containing clozapine.
2 Material e methods
2.1 Materials and reagents
All chemicals were of analytical grade. All other reagents were purchased from Sigma
Chemical Co. (St. Louis, MO, USA).
2.2 Experimental animals
This study was approved by the Ethics Committee on Animal Use (CEUA), Federal
University of Pampa (UNIPAMPA) under Protocol nº. 034/2012, which is affiliated to the
Brazilian College of Animal Experimentation (COBEA). Since the experiments were
conducted in accordance with the ethical and technical principles of animal experimentation
established by the National Council for the Control of Animal Experimentation (CONCEA)
and Law nº. 11.794 of 08 October 2008 which establishes procedures for the scientific use of
animals (BRASIL, 2008; 2013).
Were used 48 adult Wistar rats, weighing about 250g, coming from the Bioterio of
Federal University of Santa Maria. The animals remained in the Bioterio of Federal
University of Pampa, Campus Uruguaiana, under standard environmental conditions,
maintained in cabinets with dark/light cycle of 12 hours. They were fed ad libitum diet, this
being appropriate in quantity and quality to maintain their health, with free access to drink
water, ad libitum.
The animals were divided into eight experimental groups consisting of 6 animals each.
The groups were treated as follows: saline solution NaCl 0.9% 1.0 mL/Kg (SAL), free
clozapina 25 mg/Kg (CZP), blank uncoated nanocapsules 1.0 mL/Kg (BNC), clozapine-
loaded uncoated nanocapsules 25 mg/Kg (CNC), blank chitosan-coated nanocapsules 1.0
mL/Kg (BCSN), clozapine-loaded chitosan-coated nanocapsules 25 mg/Kg (CCSN), blank
clozapina-loaded
polyethyleneglycol-coated nanocapsules 25 mg/Kg (CPEGN). The animals received the
formulation once a day for seven consecutive days and euthanized in the eighth day.
The dose of administration of the solutions containing clozapine used was 25 mg/Kg
in a volume of 1.0 mL/Kg and route of administration was intraperitoneal (CANADIAN
COUNCIL ANIMAL CARE, 1993; POLYDORO et al., 2004; REINKE et al., 2004). The
animals receive the formulations once a day, always at the same time, during seven
consecutive days. In the eighth day, the rats were euthanized, after euthanasia the global blood
and immediately processed for further analysis.
2.3 Preparation of the suspensions of nanocapsules
The nanocapsules (NC) were prepared using the interfacial precipitation of the
preformed polymer method. The organic phase was constituted with poli(ε-caprolactone),
TCM, Lipoid S45® and CZP dissolved in acetone kept under heating and stirring. This phase
was poured in aqueous phase with polysorbate 80. After the formation of suspension of NC,
the acetone and part of the water are evaporated (1.5 mg/mL of CZP). To obtain the
formulation covered with PEG, this was added to the aqueous phase of the suspension. For the
covering with CS, aqueous acid solution of polysaccharide was added to the NC solution and
kept under constant stirring for a period an hour. Unloaded NC were prepared (BNC).
2.4 Physico-chemical characterization of nanocapsules
The formulations were characterized by the diameter, specific surface area (SPAN)
(Mastersizer, Malvern), Zeta potential (Zetasizer, Malvern), pH, drug content and
encapsulation efficiency (EE) (HPLC-PDA) (BIENIEK et al., 2011).
2.5 Oxidative parameters
2.5.1 Lipid peroxidation
As an index of production of reactive species were measured by the
spectrophotometric method the formation of thiobarbituric acid reactive substance (TBARS)
during an acid-heating reaction, which is widely adopted as a sensitive method for measuring
lipid peroxidation (OHKAWA et al., 1979). The results are expressed as equivalents of
malondialdehyde (MDA) (nmolMDA/mL). All assays were performed in triplicate.
2.5.2 Carbonylation proteins
Oxidative damage of proteins was assessed by the spectrophotometric method for the
determination of carbonyl groups based on the reaction with DNPH (LEVINE et al., 1990).
All assays were performed in triplicate.
2.5.3 Comet assay
The assessment of DNA damage index was performed by comet assay (SINGH et al.
2.5.4 Test micronucleus
The frequency of micronuclei was evaluated in leukocytes. Global blood was collected
and a sample was placed on the surface of the blade and made a smear, the blood was spread
over the surface of the blade. After 24 hours, the slides were fixed in 96% ethanol for 30 min.
The slides were stained with Panoptic dye and washed in water and put to dry. After drying
the cells analyzed were considered as micronuclei the particles in relation to the main core:
not exceed 1/3 of their size, are clearly separated with discernible edges and with the same
color and refringence core (SCHMID, 1975).
2.6 Antioxidant Defenses
2.6.1 Catalase
The evaluation of catalase (CAT) was performed according to the method described
by Aebi , 1984. All assays were performed in triplicate.
2.6.2 Superoxide dismutase
Measurement of superoxide dismutase (SOD) activity in erythrocytes was determined
using the RANSOD ® Kit (Randox Laboratories, UK). This method employs xanthine and
xanthine oxidase to generate superoxide radicals which react with 2-(4-iodophenyl)-3-(4
nitrophenol)-5-phenyltetrazole chloride (INT) to form a red compound formazan. The activity
of superoxide dismutase was measured by the degree of inhibition of this reaction to 505 nm.
All assays were performed in triplicate.
2.6.3 Glutathione Peroxidase
Measurement of glutathione peroxidase (GPx) activity in erythrocytes was determined
using the Ransel ® Kit (Randox Laboratories, UK), according to Paglia & Valentine, 1967.
All assays were performed in triplicate.
2.6.4 Total Glutathione
The quantification of the total glutathione (GSH) levels in RBCs was taken at 412 nm,
observing the appearance of a yellow color oxidation product of 5,5'-bisditio-2-nitrobenzoic
acid (DTNB). The standard containing 1 mM GSSG and white were measured separately
(AKERBOOM & SIES, 1981). All assays were performed in triplicate.
2.6 Statistical analysis
Data were expressed as mean ± standard deviation (SD). Comparisons between groups
were performed using a two-way analysis of variance (ANOVA), followed by post hoc of
Bonferroni for multiple comparison tests. Results were considered statistically significant
when p<0.05. The statistical analysis was performed using the software GraphPad Prism
version 5 (GraphPad Software, Inc., La Jolla, CA, USA).
3 Results
The formulations containing CZP showed a pH higher than the formulations without
drug. BNC and CNC group showed a similar diameter of 139 ± 1 and 137 ± 2 nm
respectively. BPEGN and CPEGN group showed different values, 140 ± 1 and 142 ± 1 nm,
respectively, the same was observed to BNCS and CCSN group, 135 ± 2 and 141 ± 1,
respectively. All formulation showed SPAN values inferior to 1.5. The zeta potential was
negative for all formulation, except those covered with CS. CNC and CPEGN group
presented drug content near 100% and the EE was above 95%, but around 70% for CCSN
Values (mean ± SD) of particle mean diameter (D[4,3], nm), SPAM, zeta potential (mV) and pH of clozapine
nanoformulations (n = 3 batches)
SPAN ± DP
Zeta potential
Formulation
a Difference between BNC x CNC (p < 0.05) b Difference between BCSN x CCSN (p < 0.05) c Difference between BPEGN x CPEGN (p < 0.05)
In Figure 1 are showed the values obtained for oxidative stress parameters. Lipid
peroxidation analyses showed a significant increase (p < 0.05) induced by CZP and CS
indicating lipid membrane damage, however, CNC and CPEGN groups had a reduction in the
lipid peroxidation levels indicating protective character of nanosystems (Figure 1A). Among
the nanocapsules CNC group had better performance in analysis showing the protective
potential of the nanocapsules. The carbonylation of proteins induced by CZP, again the CS
coating induced more damage when compared other groups of nanosystems, the other treated
groups showed a significant improvement these levels suggesting protective character
nanosystems to protein damage, again CNC and PEG showed the best results (Figure 1B).
CZP group was able induce genetic oxidative damage, while nanocapsules showed a
protective character causing less DNA damage (Figure 1C), PEG coating had better
performance. The frequency of micronucleus showed damage induced by CZP and CNC
groups, the other groups had a significant reduction in damage (Figure 1 D).
FIGURE 1 - Oxidative damage markers in Wistar rats exposed to different nanosystems treatments. In A: Lipid peroxidation levels; B: Carbonyl protein contents; C: Comet assay; D: Micronucleus test. SAL: saline solution; CZP: clozapine free; BNC: blank uncoated nanocapsules; CNC: clozapine-loaded uncoated nanocapsules; BCSN: blank chitosan-coated nanocapsules; CCSN: clozapine-loaded chitosan-coated nanocapsules; BPEGN: blank
clozapina-loaded
nanocapsules. a Significantly different SAL (p < 0.05); b Significantly different CZP (p < 0.05).
Figure 2 are showed the results for antioxidant defenses. There was a reduction in the
antioxidant defenses induced by CZP confirming the oxidant potential of drug. Evidenced a
significant improvement of antioxidant enzymes SOD, CAT and GPx, the best performance
by coating CS, similar results were obtained for GSH levels (Figure 2A, 2B, 2C, 2D,
FIGURE 2 - Antioxidant defenses parameters in Wistar rats exposed to different nanosystems treatments. In A: Catalase levels; B: Superoxide dismutase levels; C: Gluthatione peroxidase levels; D: Total gluthatione levels. SAL: saline solution; CZP: clozapine free; BNC: blank uncoated nanocapsules; CNC: clozapine-loaded uncoated nanocapsules; BCSN: blank chitosan-coated nanocapsules; CCSN: clozapine-loaded chitosan-coated nanocapsules;
clozapina-loaded
polyethyleneglycol-coated nanocapsules. a Significantly different SAL (p < 0.05); b Significantly different CZP (p < 0.05).
4 Discussion
The findings showed that different coatings can act protecting cells of lipid, protein
and genetic damage. Our findings demonstrate that CZP linked to nanosystems is able to
mitigate the effects in oxidative stress parameters and increase antioxidant defenses, thus are
able to minimize the cytotoxic potential of CZP.
This occurs probably owing vectoring of drug through of the nanocapsules, making
with the drug no undergo extensive hepatic metabolism and thus generating less toxic
metabolites. Similar findings were obtained with haloperidol nanoencapsuladed demonstrated
beneficial effects of nanosystems in motor system and oxidative damage in brain regions
(BENVEGNÚ et al., 2012).
Lipids oxidative damage is a complex process involving the interaction of reactive
oxygen species with polyunsaturated fatty acids, components of cell membranes. This process
results in structural disorganization and loss of selectivity of the membranes, which can lead
to cell death (GUTTERIDGE & HALLIWELL, 2000). Both CZP as CS group induced lipid
peroxidation indicating potential oxidative damage, our findings corroborate the literature,
studies in rats treated with haloperidol and/or CZP demonstrated that these drugs were able to
induce lipid damage in various structures in the central nervous system (POLYDORO et al.,
2004; REINKE et al., 2004; AGOSTINHO et al., 2007).
Proteins are immediate to oxidative modification caused by reactive oxygen species,
altering their structure, causing loss of function and protein fragmentation targets. The
carbonylation of proteins was induced by CZP and CS generating protein damage, similar
findings were reported in a study that evaluated the oxidative damage in rat brain induced by
chronic administration of haloperidol (POLYDORO et al., 2004). Other studies showed that
schizophrenic patients have elevated levels of carbonyl groups and isoprostanes in plasma
owing oxidative stress (DIETRICH-MUSZALKA et al., 2009, 2012; DIETRICH-
MUSZALKA & OLAS, 2009).
The CZP was able to induce genetic oxidative damage, although the nanocapsules
conferring protective character are still able to generate DNA damage. This may stem from
changes in DNA by direct interaction when the nanocapsules cross cell membranes obtaining
direct access to the core, or indirect damages owing oxidative damage and inflammatory
responses. These materials may remain accumulated in the cells, which can trigger severe
responses such as mutagenesis and carcinogenesis (LANDSIEDEL et al., 2009).
The results showed a reduction of damage lipid of membranes, protein and genetic in
groups with PEG and uncoated nanocapsules in comparison with CS coatings, leading to a
neuroprotective action related to the type of coating.
Many studies have showed that drug-loaded nanoparticles are an efficient tool for drug
delivery, enhancing the therapeutic effect and reduce adverse side effects (BECK et al., 2005;
2006; WU et al., 2008; BERNARDI et al., 2009; FONTANA et al., 2011). Moreover, these
nanosystems are able to promote the permeation of drugs across the blood brain barrier, as has
been demonstrated by several authors, suggesting its use as an alternative to drug delivery in
the brain (BERNARDI et al., 2009; 2010; WANG et al., 2009; XIN-HUA et al., 2011).
Our findings demonstrate the beneficial effects of nanocapsules about antioxidant
defense corroborating the literature that chronic exposure to clozapine resulted in significant
reduction of antioxidant enzymes SOD and CAT (POLYDORO et al., 2004). The enzyme
system is the primary pathway of antioxidant defense, being mainly represented by
antioxidant enzymes GPx, CAT and SOD (GUTTERIDGE e HALLIWELL, 2000; BELLÓ,
2002). Thus, the enzymatic and non-enzymatic antioxidant system reduces reactive oxygen
species and consequently the damage to biological structures (BELLÓ, 2002).
5 Conclusion
Our findings showed oxidative damage to membrane of lipids, proteins and genetic
material induced by clozapine as well as the reduction of antioxidant defenses. When the drug
was administered through nanosystems the oxidative damage has been reduced. Regarding the
type of coating, uncoated and PEG-coated nanocapsules can realize a more efficient
protective activity compared CS nanocapsules. Thus, it is concluded that the nanosystems is a
potential alternative for the clinical treatment of clozapine.
Conflicts of interest statement
All authors report no conflict of interest.
References
AEBI, H. Catalase in vitro. Methods in Enzymology, v. 105, p. 121-6, 1984.
AGOSTINHO, F. R. et al. Effects of chronic haloperidol and/or clozapine on oxidative stress
parameters in rat brain. Neurochemistry Research, v.32, p. 1343-50, 2007.
AKERBOOM, T. P. M. & SIES, H. Assay of Glutathione Disulfide, and Glutathione Mixed
Disulfides in Biological Samples. Methods in Enzymology, v. 77, p. 373-82, 1981.
BECK, R.C.R. et al. Nanostructure-coated diclofenac-loaded microparticles: preparation,
morphological characterization, in vitro release and in vivo gastrointestinal tolerance. Journal
of the Brazilian Chemical Society, v. 16, p. 1233-40, 2005.
BECK, R.C.R. et al. Nanoparticle-coated organic-inorganic microparticles: experimental
design and gastrointestinal tolerance evaluation. Química Nova, v. 29, p. 990-6, 2006.
BELLÓ, A. Dano oxidativo e regulação biológica pelos radicais livres. In: Marroni, N. P. et
al. Estresse Oxidativo e Antioxidantes. Porto Alegre: Editora Ulbra, 2002.
BENVEGNÚ, D. M. et al. Haloperidol-loaded polysorbate-coated polymeric nanocapsules
decrease its adverse motor side effects and oxidative stress markers in rats. Neurochemistry
International, v.61, p. 623-31, 2012.
BERNARDI, A. et al. Indomethacin-loaded nanocápsulas treatment reduces in vivo
glioblastoma growth in a rat glioma model. Cancer Letters, v. 281, p. 53-63, 2009.
BERNARDI, A. et al. Protective effects of indomethacin-loaded nanocapsules against
oxygen-glucose deprivation in organotypic hippocampal slice cultures: involvement of
neuroinflammation. Neurochemistry International, v. 57, p. 629-36, 2010.
BIENIEK. D. D. et al. Validação de metodologia analítica por cromatografia líquida de alta
eficiência para doseamento de clozapina em nanopartículas poliméricas. Perspectiva,
Erechim, v. 35, n.129, p. 17-26, 2011.
BRASIL. Lei nº 11.794, de 08 de Outubro de 2008. Regulamenta o inciso VII do § 1o do art.
225 da Constituição Federal, estabelecendo procedimentos para o uso científico de animais;
revoga a Lei no 6.638, de 8 de maio de 1979; e dá outras providências. Disponível em:
<http://www.planalto.gov.br/ccivil_03/_Ato2007-2010/2008/Lei/L11794.htm>. Acessado em:
21 de maio de 2013.
BRASIL. Ministério da Ciência, Tecnologia e Inovação Conselho Nacional de Controle de
Experimentação Animal – CONCEA. Diretriz Brasileira para o cuidado e a utilização de
animais para fins científicos e didáticos – DBCA. Brasília-DF, 2013.
CANADIAN COUNCIL ANIMAL CARE. Guide to the Care and Use of experimental
Animals, 1993. Disponível em:
<http://www.ccac.ca/Documents/Standards/Guidelines/Experimental_Animals_Vol1.pdf>.
Acessado em: 10 de maio de 2012.
DIETRICH-MUSZALKA, A. et al. Oxidative/nitrative modifications of plasma proteins and
thiols from patients with schizophrenia. Neuropsichobiology, v. 59, p.1-7, 2009.
DIETRICH-MUSZALKA, A. et al. The oxidative stress may be induced by the elevated
homocysteine in schizophrenic patients. Neurochemistry Research, v. 37, p.1057-62, 2012.
DIETRICH-MUSZALKA, A. & OLAS, B. Isoprostenes as indicators of oxidative stress in
schizophrenia. The World Journal of Biology Psychiatry, v. 10, p. 27-33, 2009.
DIETRICH-MUSZALSKA, A.; OLAS, B. & RABE-JABLONSKA, J. Oxidative stress in
blood platelets from schizophrenic patients. Platelets, v. 16, p. 386–91, 2005.
ELKIS, H. & MELTZER, H. Y. Esquizofrenia refratária. Revista Brasileira de Psiquiatria,
v. 29, supl. II, p.S41-7, 2007.
FLANAGAN, R. & DUNK, L. Haematological toxicity of drugs used in psychiatry.
Human Psychopharmacology: Clinical and Experimental, v. 23, p. 27-41, 2008.
FONTANA, M.C. et al. Improved efficacy in the treatment of contact dermatitis in rats by a
dermatological nanomedicine containing clobetasol propionate. European Journal of
Pharmaceutics and Biopharmaceutics, v. 79, p. 241-9, 2011.
GASZNER, P.; MAKKOS, Z. & KOSZA, P. Agranulocytosis during clozapine therapy.
Progress in Neuro-Psychopharmacology & Biological Psychiatry, v. 26, p. 603-7, 2002.
GUTTERIDGE, J. & HALLIWELL, B. Free radicals and antioxidants in the year 2000: a
historical look to the future. Annals of the New York Academy of Sciences, v. 899, supl. 1,
p. 136-147, 2000.
HUSAIN, Z.; et al. Increased FasL expression correlates with apoptotic changes in
granulocytes cultured with oxidized clozapine. Toxicology and Applied Pharmacology, v.
214, p. 326-34, 2006.
JANN, M. W. Clozapine. Pharmacotherapy, v. 11, supl. 3, p. 179-95, 1991.
JANN, M. W. et al. Pharmacokinetics and pharmacodynamics of clozapine. Clinical
Pharmacokinetics, v. 24, supl. 2, p. 161-76, 1993.
LANDSIEDEL, R. et al. Genotoxicity investigations on nanomaterials: methods, preparation
and characterization of test material, potential artifacts and limitations – many questions,
some answers. Mutation Research, v. 681, p. 241-58, 2009.
LEVINE, R. Carbonyl modified proteins in cellular regulation, aging, and disease. Free
Radical Biology & Medicine, v. 32, p. 790–796, 1990.
LOUS, J. A. E. D. V. T. et al. CYP1A2 activity is an important determinant of clozapina
dosage in schizophrenic patients. European Journal of Pharmaceutical Sciences, v. 20,
451-7, 2003.
MCILWAIN, M. E. et al. Pharmacotherapy for treatment-resistant Schizophrenia.
Neuropsychiatric Disease and Treatment, v. 7, p. 135-49, 2011.
MUTHU, M. S. et al. PLGA nanoparticle formulations of risperidone: preparation and
neuropharmacological evaluation. Nanomedicine, v. 5, p. 323-33, 2009.
OHKAWA, H.; OHISHI, H.; YAGI, K. Assay for lipid peroxide in animal tissues by
thiobarbituric acid reaction. Annals of Biochemistry, v. 95, p. 351–358, 1979.
PAGLIA, D. E. & VALENTINE, W. N. Studies on the quantitative and qualitative
characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and
Clinical Medicine, v. 70, p. 158-69, 1967.
PEREIRA, A. & DEAN, B. Clozapine bioactivation induces dose dependent, drug-specific
toxicity of human bone marrow stromal cells: a potential in vitro system for the study of
agranulocytosis. Biochemical Pharmacology, v. 72, p. 783-93, 2006.
PIRMOHAMED, M. AND PARK, K. Mechanism of clozapine-induced agranulocytosis.
Current status of research and implications for drug development. CNS Drugs, v. 7, p. 139-
58, 1997.
POLYDORO, M. et al. Haloperidol- and clozapine-induced oxidative stress in the rat brain.
Pharmacology Biochemistry and Behavior, v. 78, p. 751-6, 2004.
REDDY, R. D. & YAO, J. K. Free radical pathology in schizophrenia: a review.
Prostaglandins Leukot Essent Fatty Acids, v. 55, p.33–4, 1996.
REINKE, A. et al. Haloperidol and clozapine, but not olanzapine, induces oxidative stress in
rat brain. Neuroscience Letters, v. 372, p. 157-60, 2004.
SCHMID, W. The micronucleus test. Mutation Research, v. 31, p. 9, 1975.
SILVA, C. E. R. et al. Estudo-piloto com clozapina em hospital público: resultados de um ano
de acompanhamento. Revista Brasileira de Psiquiatria, v. 23, p.4, 2001.
SINGH, N.P. et al. A simple technique for quantitation of low levels of DNA damage in
individual cells. Experimental Cell Research, v 175, p 184-191, 1988.
SINGH, N. et al. Nanogenotoxicology: the DNA damaging potential of engineered
nanomaterials. Biomaterials, v. 30, p. 3891–914, 2009.
TOURÉ, A. & XUEMING, X. Flaxseed Lignans: source, biosynthesis, metabolism,
antioxidant activity, bio-active components, and health benefits. Comprehensive
Reviews in Food Science and Food Safety, v. 9, p. 261-70, 2010.
WANG, C.X. et al. Antitumor effects of polysorbate-80 coated gemcitabine
polybutylcyanoacrylate nanoparticles in vitro and its pharmacodynamics in vivo on C6 glioma
cells of a brain tumor model. Brain Research,v. 1261, p. 91-9, 2009.
WU, T.W. et al. Preparation, physicochemical characterization, and antioxidant effects of
quercetin nanoparticles. International Journal of Pharmaceutics, v. 346, p. 160-8, 2008.
XIN-HUA, T. et al. Enhanced brain targeting of temozolomide in polysorbate-80 coated
polybutylcyanoacrylate nanoparticles. International Journal of Nanomedicine, v. 6, p. 445-
52, 2011.
YAO, J. K. et al. Reduced status of plasma total antioxidant capacity in schizophrenia.
Schizophrenia Research, v.32, p. 1–8, 1998.
MANUSCRITO III
Clozapine linked to nanosystems reduces oxidative damage to biomolecules lipids,
proteins and DNA in brain of rats Wistar
Angélica Aparecida da Costa Güllich, Ritiéle Pinto Coelho, Muriel Pando Pereira, Bruna
Cocco Pilar, Deise Jaqueline Ströher, Leandro Alex Sander Leal Galarça, Jacqueline da
Costa Escobar Piccoli, Vanusa Manfredini
Em fase de preparação para submissão para Brain Research
Clozapine linked to nanosystems reduces oxidative damage to biomolecules lipids,
proteins and DNA in brain of rats Wistar
Angélica Aparecida da Costa Güllicha, Ritiéle Pinto Coelhob, Muriel Pando Pereirab, Bruna
Cocco Pilara, Deise Jaqueline Ströhera, Leandro Alex Sander Leal Galarçab, Jacqueline da
Costa Escobar Piccolia,b,c,d, Vanusa Manfredinia,b,c,*
Affiliation
a Postgraduate Program in Biochemistry, Federal University of Pampa, Uruguaiana, Rio
Grande do Sul, Brazil.
b Course of Pharmacy, Federal University of Pampa, Uruguaiana, Rio Grande do Sul, Brazil.
c Postgraduate Lato Sensu Program in Pharmaceutical Scienses, Federal University of Pampa,
Uruguaiana, Rio Grande do Sul, Brazil.
d Postgraduate Program in Pharmaceutical Scienses, Federal University of Pampa,
Uruguaiana, Rio Grande do Sul, Brazil.
* Correspondence should be addressed: Vanusa Manfredini, Universidade Federal do Pampa
– Campus Uruguaiana, Laboratório de Hematologia e Citologia Clínica, BR 472, Km 585,
Uruguaiana, RS, Brazil, CEP: 97500-970. Tel.: (55) 3413-4321. Fax: (55) 3414-1484. E-mail
address: [email protected]
Abstract
Second-generation antipsychotic, clozapine, is used in the treatment of refractory schizophrenia. The reactive species, in excess, can have a crucial role in the etiology of this disease. Clozapine, like other neuroleptics, can change oxidative stress parameters potentiating disease symptoms. The clinical limitation of clozapine owing their serious adverse effects, the nanocapsules have attracted attention as carriers of several drugs with different therapeutic goals, such as vectorization of the same for target tissue with consequent reduction of side effects. This study aimed to evaluate oxidative damage of biomolecules lipids, proteins and DNA in the brain of Wistar rats after treatment with nanosystems containing clozapine. The study consisted of eight groups of male Wistar rats (n = 6), animals received the following treatments: saline solution (SAL) (NaCl 0.9% 1.0 mL/Kg i.p.), free clozapine (CZP) (25 mg/Kg i.p.), blank uncoated nanocápsulas (BNC) (1.0 mL/Kg i.p.), clozapine-loaded uncoated nanocapsules (CNC) (25 mg/Kg i.p.), blank chitosan-coated nanocapsules (BCSN) (1.0 mL/Kg i.p.), clozapine-loaded chitosan-coated nanocapsules (CCSN) (25 mg/Kg i.p.), blank polyethyleneglycol-coated nanocapsules (BPEGN) (1.0 mL/Kg i.p.), clozapine-loaded polyethyleneglycol-coated nanocapsules (CPEGN) (25 mg/Kg i.p.). The animals received the formulation once a day for seven consecutive days and euthanized in the eighth day. After euthanasia, the brain was collected each animal and immediately the organ homogenate was processed for further analysis. The evaluation of lipid peroxidation showed a significant increase (p < 0.05) induced by CZP and other groups treated with the drug indicating lipid membrane damage, CNC and CPEGN groups obtained a reduction of lipid peroxidation, indicating the protective character of nanosystems. The carbonylation of proteins was induced by CZP, while the nanosystems-treated groups showed a significant improvement these levels suggesting protective character nanosystems protein damage. The CZP was able to induce oxidative genetic damage, while the nanocapsules conferred a protective character causing less damage to DNA. The findings show that different coatings can act protecting target tissues and/or cell decreasing lipid, protein and genetic damage. These results indicate that the drug when linked to different nanocapsules is able to mitigate the harmful effects of the drug.
Keywords: refractory schizophreni, clozapine, nanosystems, oxidative stress, lipid
peroxidation, protein carbonylation, genetic damage.
1 Introduction
Clozapine is an effective atypical antipsychotic used, particularly, in the treatment of
patients with refractory schizophrenia to other neuroleptics. Clozapine is therapeutically
effective, in both positive and negative symptoms. Unlike other neuroleptics, no produces
significant extrapyramidal side effects (JANN, 1991; JANN et al., 1993; SILVA, et al., 2001;
LOUS et al., 2003; ELKIS & MELTZER, 2007; MCILWAIN et al., 2011).
The clozapine has limited clinical use owing potential adverse effects, which are
mainly associated to reactive metabolites. The metabolism of drug generates two reactive
metabolites, the N-desmethylclozapine and clozapine N-oxide, which damage cells (BUUR-
RASMUSSEN & BROSEN, 1999; SWARTZ, 2001).
Antipsychotics may enhance oxidative stress, although atypical antipsychotics produce
less damage, clozapine is a potential oxidant (AGOSTINHO et al., 2007). Reports
demonstrate that chronic exposure to clozapine resulted in significant reduction of antioxidant
enzymes SOD and CAT, as well as producing oxidative damage in different structures of rat
brain (POLYDORO et al., 2004; REINKE et al., 2004).
One of hypotheses involving oxidative stress and CZP is the potential mechanism
involving metabolic activation of CZP by free radicals generated by peroxidase, or genetic
factors (GASZNER, MAKKOS & KOSZA, 2002). Studies reported that activation of
metabolites CZP can cell death induced by oxidative stress (PIRMOHAMED & PARK, 1997;
HUSAIN et al., 2006; PEREIRA & DEAN, 2006; FLANAGAN & DUNK, 2008).
Lipid peroxidation has been implicated in many toxic effects of many drugs and tissue
injury and disease processes (DAL-PIZZOL et al., 2001). It has been suggested that the
reactive oxygen species may be involved in neuronal damage, inducing an increase lipid
peroxidation. In addition, lipid peroxidation can be responsible to loss of membrane
permeability (DAL-PIZZOL et al., 2000).
Advances in nanotechnology over the past three decades have had significant impact
on clinical diagnosis and therapy (SALATA, 2004). The nanocapsules have the advantage of
their small size that when combined with the use of polymers can vectorize drugs to target
tissue and/or cell, improved oral bioavailability, controlled release, and protection against
enzymatic degradation (HAIXIONG et al., 2002).
However, security aspects of nanosystems are not well defined. Changes in DNA can
occur by direct interaction when the nanocapsules cross cell membranes obtaining direct
access to the core, or indirect damages owing oxidative damage and inflammatory responses.
These materials may remain accumulated in the cells, which can trigger severe responses such
as mutagenesis and carcinogenesis (LANDSIEDEL et al., 2009).
However, the aim this study was to evaluate oxidative damage of biomolecules lipids,
proteins and DNA in the brain of rats after treatment with nanosystems containing clozapine.
2 Material e methods
2.1 Materials and reagents
All chemicals were of analytical grade. All other reagents were purchased from Sigma
Chemical Co. (St. Louis, MO, USA).
2.2 Experimental animals
This study was approved by the Ethics Committee on Animal Use (CEUA), Federal
University of Pampa (UNIPAMPA) under Protocol nº. 034/2012, which is affiliated to the
Brazilian College of Animal Experimentation (COBEA). Since the experiments were
conducted in accordance with the ethical and technical principles of animal experimentation
established by the National Council for the Control of Animal Experimentation (CONCEA)
and Law nº. 11.794 of 08 October 2008 which establishes procedures for the scientific use of
animals (BRASIL, 2008; 2013).
Were used 48 adult Wistar rats, weighing about 250g, coming from the Bioterio the
Federal University of Santa Maria. The animals remained in the Bioterio the Federal
University of Pampa, Campus Uruguaiana, under standard environmental conditions,
maintained in cabinets with dark/light cycle of 12 hours. They were fed ad libitum diet, this
being appropriate in quantity and quality to maintain their health, with free access to drink
water, ad libitum.
The animals were divided into eight experimental groups consisting of 6 animals each.
The groups were treated as follows: saline solution NaCl 0.9% 1.0 mL/Kg (SAL), free
clozapina 25 mg/Kg (CZP), blank uncoated nanocapsules 1.0 mL/Kg (BNC), clozapine-
loaded uncoated nanocapsules 25 mg/Kg (CNC), blank chitosan-coated nanocapsules 1.0
mL/Kg (BCSN), clozapine-loaded chitosan-coated nanocapsules 25 mg/Kg (CCSN), blank
clozapina-loaded
polyethyleneglycol-coated nanocapsules 25 mg/Kg (CPEGN). The animals received the
formulation once daily for seven consecutive days and euthanized on the eighth day.
The dose of administration of the solutions containing clozapine used was 25 mg/Kg
in a volume of 1.0 mL/Kg and route of administration was intraperitoneal (CANADIAN
COUNCIL ANIMAL CARE, 1993; POLYDORO et al., 2004; REINKE et al., 2004). The
animals received the formulations once a day, always at the same time, during seven
consecutive days. In the eighth day, the rats were euthanized, after euthanasia the brain was
collected each animal and immediately the organ homogenate was processed for further
2.3 Preparation of the suspensions of nanocapsules
The nanocapsules (NC) were prepared using the interfacial precipitation of the
preformed polymer method. The organic phase was constituted with poli(ε-caprolactone),
TCM, Lipoid S45® and CZP dissolved in acetone kept under heating and stirring. This phase
was poured in aqueous phase with polysorbate 80. After the formation of suspension of NC,
the acetone and part of the water are evaporated (1.5 mg/mL of CZP). To obtain the
formulation covered with PEG, this was added to the aqueous phase of the suspension. For the
covering with CS, aqueous acid solution of polysaccharide was added to the NC solution and
kept under constant stirring for a period an hour. Unloaded NC were prepared (BNC).
2.4 Physico-chemical characterization of nanocapsules
The formulations were characterized by the diameter, specific surface area (SPAN)
(Mastersizer, Malvern), Zeta potential (Zetasizer, Malvern), pH, drug content and
encapsulation efficiency (EE) (HPLC-PDA) (BIENIEK et al., 2011).
2.5 Oxidative parameters
2.5.1 Lipid peroxidation
As an index of production of reactive species were measured by the
spectrophotometric method the formation of thiobarbituric acid reactive substance (TBARS)
during an acid-heating reaction, which is widely adopted as a sensitive method for measuring
lipid peroxidation (OHKAWA et al., 1979). The results are expressed as equivalents of
malondialdehyde (MDA) (nmolMDA/mL). All assays were performed in triplicate.
2.5.2 Carbonylation proteins
Oxidative damage of proteins was assessed by the spectrophotometric method for the
determination of carbonyl groups based on the reaction with DNPH (LEVINE et al., 1990).
All assays were performed in triplicate.
2.5.3 Comet assay
The assessment of DNA damage index was performed by comet assay (SINGH et al.
2.6 Statistical analysis
Data were expressed as mean ± standard deviation (SD). Comparisons between groups
were performed using a two-way analysis of variance (ANOVA), followed by post hoc of
Bonferroni for multiple comparison tests. Results were considered statistically significant
when p<0.05. The statistical analysis was performed using the software GraphPad Prism
version 5 (GraphPad Software, Inc., La Jolla, CA, USA).
3 Results
The formulations containing CZP showed a pH higher than the formulations without
drug. BNC and CNC group showed a similar diameter of 139 ± 1 and 137 ± 2 nm
respectively. BPEGN and CPEGN group showed different values, 140 ± 1 and 142 ± 1 nm,
respectively, the same was observed to BNCS and CCSN group, 135 ± 2 and 141 ± 1,
respectively. All formulation showed SPAN values inferior to 1.5. The zeta potential was
negative for all formulation, except those covered with CS. CNC and CPEGN group
presented drug content near 100% and the EE was above 95%, but around 70% for CCSN
Values (mean ± SD) of particle mean diameter (D[4,3], nm), SPAM, zeta potential (mV) and pH of clozapine
nanoformulations (n = 3 batches)
SPAN ± DP
Zeta potential
Formulation
a Difference between BNC x CNC (p < 0.05) b Difference between BCSN x CCSN (p < 0.05) c Difference between BPEGN x CPEGN (p < 0.05)
In Figure 1 are showed the values obtained for oxidative stress parameters in the brain
of Wistar rats. The evaluation of lipid peroxidation showed a significant increase (p <0.05)
induced by CZP and CCSN groups, other groups treated with the drug indicating the lipid
membrane damage, CNC and CPEGN groups showed a reduction of lipid peroxidation,
indicating protective character of nanosystems, a fact confirmed by blank nanocapsules
groups that were equivalent SAL group (Figure 1A). The carbonylation proteins were induced
by CZP and CCSN groups, while other groups- treated showed a significant improvement
nanosystems these levels suggesting protective character nanosystems to protein damage
(Figure 1 B). The CZP was able to induce oxidative genetic damage, while nanocapsules
conferred a protective character causing less damage to DNA (Figure 1C).
FIGURE 1 - Oxidative damage markers in brain in Wistar rats exposed to different nanosystems treatments. In A: Lipid peroxidation levels; B: Carbonyl protein contents; C: Comet assay. SAL: saline solution; CZP: clozapine free; BNC: blank uncoated nanocapsules; CNC: clozapine-loaded uncoated nanocapsules; BCSN: blank chitosan-coated nanocapsules; CCSN: clozapine-loaded chitosan-coated nanocapsules; BPEGN: blank polyethyleneglycol-coated nanocapsules; CPEGN: clozapina-loaded polyethyleneglycol-coated nanocapsules. a Significantly different SAL (p < 0.05); b Significantly different CZP (p < 0.05).
4 Discussion
The findings showed that different coatings can act protecting target tissues and/or cell
decreasing lipid, protein and genetic damage. These results indicate that CZP linked to
nanosystems is able of attenuating the effects of oxidative stress parameters. This is probably
owing vectoring of the drug through the nanocapsules, the drug not undergo extensive hepatic
metabolism and thus generating less toxic metabolites. Similar findings were obtained with
haloperidol nanoencapsulado demonstrated the beneficial effects of nanocapsules the engine
system, and resulting in lower oxidative damage in brain regions compared with free drug
(BENVEGNÚ et al., 2012).
The results related to brain cells showed a reduction of greater damage in groups
treated with PEG and uncoated nanocapsules in comparison with chitosan, leading to a
neuroprotective action related type of coating.
Studies with antipsychotic showed that effects of haloperidol when nanocapsuladed
when was maintained for a longer time and more effectively, have been reduced motors side
effects compared to free drug (BENVEGNÚ et al., 2011). Many studies have shown that
drug-loaded nanoparticles are an efficient tool for drug delivery, enhancing the therapeutic
effect and reduce adverse side effects (BECK et al., 2005; 2006; BERNARDI et al., 2009;
FONTANA et al., 2011; WU et al., 2008). Moreover, these nanosystems are able to promote
the permeation of drugs across the hematoencephalic barrier, as has been demonstrated by
several authors, suggesting its use as an alternative to drug delivery in the brain (BERNARDI
et al., 2009; 2010; XIN -HUA et al., 2011; WANG et al., 2009).
5 Conclusion
Our findings indicate oxidative damage membranes of lipids, proteins and genetic
material brain cells when exposed to clozapine. When the drug was administered through the
nanocapsules has been reduced damage. Regarding the type of coating, uncoated and coated
nanocapsules with PEG have a more and efficient protective activity compared CS-coated.
The nanosystems have potential to provide clinical benefit as an effective therapy for
refractory schizophrenia.
Conflicts of interest statement
All authors report no conflict of interest.
References
AGOSTINHO, F. R. et al. Effects of chronic haloperidol and/or clozapine on oxidative stress
parameters in rat brain. Neurochemistry Research, v.32, p. 1343-50, 2007.
BECK, R.C.R. et al. Nanostructure-coated diclofenac-loaded microparticles: preparation,
morphological characterization, in vitro release and in vivo gastrointestinal tolerance. Journal
of the Brazilian Chemical Society, v. 16, p. 1233-40, 2005.
BECK, R.C.R. et al. Nanoparticle-coated organic-inorganic microparticles: experimental
design and gastrointestinal tolerance evaluation. Química Nova, v. 29, p. 990-6, 2006.
BENVEGNÚ, D. M. et al. Haloperidol-loaded polysorbate-coated polymeric nanocapsules
increase its efficacy in the antipsychotic treatment in rats. European Journal of
Pharmaceutics and Biopharmaceutics, v.77, p. 332–36, 2011.
BENVEGNÚ, D. M. et al. Haloperidol-loaded polysorbate-coated polymeric nanocapsules
decrease its adverse motor side effects and oxidative stress markers in rats. Neurochemistry
International, v.61, p. 623-31, 2012.
BERNARDI, A. et al. Indomethacin-loaded nanocápsulas treatment reduces in vivo
glioblastoma growth in a rat glioma model. Cancer Letters, v. 281, p. 53-63, 2009.
BERNARDI, A. et al. Protective effects of indomethacin-loaded nanocapsules against
oxygen-glucose deprivation in organotypic hippocampal slice cultures: involvement of
neuroinflammation. Neurochemistry International, v. 57, p. 629-36, 2010.
BIENIEK. D. D. et al. Validação de metodologia analítica por cromatografia líquida de alta
eficiência para doseamento de clozapina em nanopartículas poliméricas. Perspectiva,
Erechim, v. 35, n.129, p. 17-26, 2011.
BRASIL. Lei nº 11.794, de 08 de Outubro de 2008. Regulamenta o inciso VII do § 1o do art.
225 da Constituição Federal, estabelecendo procedimentos para o uso científico de animais;
revoga a Lei no 6.638, de 8 de maio de 1979; e dá outras providências. Disponível em:
<http://www.planalto.gov.br/ccivil_03/_Ato2007-2010/2008/Lei/L11794.htm>. Acessado em:
21 de maio de 2013.
BRASIL. Ministério da Ciência, Tecnologia e Inovação Conselho Nacional de Controle de
Experimentação Animal – CONCEA. Diretriz Brasileira para o cuidado e a utilização de
animais para fins científicos e didáticos – DBCA. Brasília-DF, 2013.
BUUR-RASMUSSEN, B. & BROSEN, K. Cytochrome P450 and therapeutic drug
monitoring with respect to clozapine. European Neuropsychopharmacology, v. 9, p. 453-9,
1999.
CANADIAN COUNCIL ANIMAL CARE. Guide to the Care and Use of experimental
Animals, 1993. Disponível em:
<http://www.ccac.ca/Documents/Standards/Guidelines/Experimental_Animals_Vol1.pdf>.
Acessado em: 10 de maio de 2012.
DAL-PIZZOL, F.; et al. Lipid peroxidation in hippocampus early and late after status
epilepticus induced by pilocarpine or kainic acidin Wistar rats. Neuroscience Letters, v. 291,
179–182, 2000.
DAL-PIZZOL, F.; et al. Retinol supplementation induces oxidative stress and modulates
antioxidant enzyme activities in rat Sertoli cells. Free Radical Research, v. 34, p. 395-404,
2001.
ELKIS, H. & MELTZER, H. Y. Esquizofrenia refratária. Revista Brasileira de Psiquiatria,
v. 29, supl. II, p.S41-7, 2007.
FLANAGAN, R. & DUNK, L. Haematological toxicity of drugs used in psychiatry.
Human Psychopharmacology: Clinical and Experimental, v. 23, p. 27-41, 2008.
FONTANA, M.C. et al. Improved efficacy in the treatment of contact dermatitis in rats by a
dermatological nanomedicine containing clobetasol propionate. European Journal of
Pharmaceutics and Biopharmaceutics, v. 79, p. 241-9, 2011.
GASZNER, P.; MAKKOS, Z. & KOSZA, P. Agranulocytosis during clozapine therapy.
Progress in Neuro-Psychopharmacology & Biological Psychiatry, v. 26, p. 603-7, 2002.
HAIXIONG, G. et al. Preparation, characterization, and drug release behaviors of drug
nimodipine-loaded poly (e-caprolactone)–poly (ethylene oxide)–poly ecaprolactone)
amphiphilic triblock copolymer micelles. Journal of Pharmaceutical Sciences, v. 91, p.
1463-73, 2002.
HUSAIN, Z.; et al. Increased FasL expression correlates with apoptotic changes in
granulocytes cultured with oxidized clozapine. Toxicology and Applied Pharmacology, v.
214, p. 326-34, 2006.
JANN, M. W. Clozapine. Pharmacotherapy, v. 11, supl. 3, p. 179-95, 1991.
JANN, M. W. et al. Pharmacokinetics and pharmacodynamics of clozapine. Clinical
Pharmacokinetics, v. 24, supl. 2, p. 161-76, 1993.
LEVINE, R. Carbonyl modified proteins in cellular regulation, aging, and disease. Free
Radical Biology & Medicine, v. 32, p. 790–796, 1990.
LOUS, J. A. E. D. V. T. et al. CYP1A2 activity is an important determinant of clozapina
dosage in schizophrenic patients. European Journal of Pharmaceutical Sciences, v. 20,
451-7, 2003.
MCILWAIN, M. E. et al. Pharmacotherapy for treatment-resistant Schizophrenia.
Neuropsychiatric Disease and Treatment, v. 7, p. 135-49, 2011.
OHKAWA, H.; OHISHI, H.; YAGI, K. Assay for lipid peroxide in animal tissues by
thiobarbituric acid reaction. Annals of Biochemistry, v. 95, p. 351–358, 1979.
PEREIRA, A. & DEAN, B. Clozapine bioactivation induces dose dependent, drug-specific
toxicity of human bone marrow stromal cells: a potential in vitro system for the study of
agranulocytosis. Biochemical Pharmacology, v. 72, p. 783-93, 2006.
PIRMOHAMED, M. AND PARK, K. Mechanism of clozapine-induced agranulocytosis.
Current status of research and implications for drug development. CNS Drugs, v. 7, p. 139-
58, 1997.
POLYDORO, M. et al. Haloperidol- and clozapine-induced oxidative stress in the rat brain.
Pharmacology Biochemistry and Behavior, v. 78, p. 751-6, 2004.
REINKE, A., et al. Haloperidol and clozapine, but not olanzapine, induces oxidative stress in
rat brain. Neuroscience Letters, v. 372, p. 157-60, 2004.
SALATA, O. Applications of nanoparticles in biology and medicine. Journal
of Nanobiotechnology, v. 2, p. 3–9, 2004.
SILVA, C. E. R. et al. Estudo-piloto com clozapina em hospital público: resultados de um ano
de acompanhamento. Revista Brasileira de Psiquiatria, v. 23, p.4, 2001.
SINGH, N.P. et al. A simple technique for quantitation of low levels of DNA damage in
individual cells. Experimental Cell Research, v 175, p 184-191, 1988.
SWARTZ, M. A. The physiology of the lymphatic system. Advanced Drug
Delivery Reviews, v. 50, p. 3-20, 2001.
WANG, C.X. et al. Antitumor effects of polysorbate-80 coated gemcitabine
polybutylcyanoacrylate nanoparticles in vitro and its pharmacodynamics in vivo on C6 glioma
cells of a brain tumor model. Brain Research,v. 1261, p. 91-9, 2009.
WU, T.W. et al. Preparation, physicochemical characterization, and antioxidant effects of
quercetin nanoparticles. International Journal of Pharmaceutics, v. 346, p. 160-8, 2008.
XIN-HUA, T. et al. Enhanced brain targeting of temozolomide in polysorbate-80 coated
polybutylcyanoacrylate nanoparticles. International Journal of Nanomedicine, v. 6, p. 445-
52, 2011.
PARTE III
4 CONCLUSÃO
De acordo com os resultados apresentados nesta dissertação pode-se inferir que os
- Melhoram os parâmetros hematológicos como a contagem total de hemácias (RBC),
hemoglobina e hematócrito, bem como os demais parâmetros hematimétricos, sendo que os
revestimentos QTS e PEG obtiveram melhor desempenho nos parâmetros avaliados;
- Aprimoram os parâmetros hematológicos da série branca (WBC), contudo, as
nanocápsulas revestidas com QTS apresentaram leucocitose severa sugerindo um processo
inflamatório. Este é caracterizado por linfopenia devido a depressão do sistema imune,
confirmado pela monocitose e basofilia;
- Não houve significado clínico para a contagem global de plaquetas e MPV;
- Reduzem os níveis dos marcadores de função cardíaca CK, CK-MB e homocisteína,
sendo que a QTS obteve melhor desempenho como revestimento;
- Reduzem os níveis dos marcadores de função hepática TGO e TGP, sendo que o
revestimento QTS obteve melhor desempenho;
- Não se mostraram nefrotóxicos, mantendo os marcadores de função renal dentro dos
limites da normalidade, a exceção das nanocápsulas revestidas com QTS as quais tiveram os
níveis de ureia significativamente aumentados;
- Reduzem o dano tecidual verificado através da análise histopatológica dos órgãos
coração, fígado e rim;
- Reduzem o dano lipídico em plasma, a exceção das nanocápsulas revestidas com
- Reduzem o dano em proteínas plasmáticas, a exceção das nanocápsulas revestidas
- Reduzem o dano oxidativo no material genético (DNA) em sangue total, sendo que o
revestimento PEG mostrou melhores resultados;
- Aumentam a atividade das enzimas antioxidantes CAT, SOD e GPx em eritrócitos,
sendo o melhor desempenho obtido pelo revestimento QTS;
- Aumentam os níveis de GSH em eritrócitos, sendo o revestimento QTS o com
melhor desempenho;
- Reduzem o dano oxidativo em biomoléculas lipídios, proteínas e DNA no
homogenato do cérebro de ratos Wistar após o tratamento com os nanossistemas contendo
clozapina, a exceção das nanocápsulas revestidas com QTS que induziram dano a lipídeos de
membrana e proteínas.
Estes resultados evidenciam os efeitos positivos dos nanossistemas, portanto, a
nanoencapsulação da clozapina é uma ferramenta terapêutica promissora, capaz de atenuar os
efeitos nocivos do medicamento, minimizando o estresse oxidativo, tornando-a um fármaco
mais seguro aos pacientes.
5 PERSPECTIVAS
Este trabalho tem como perspectivas futuras:
- Realizar estudo com nanocápsulas lipídicas com diferentes tipos de revestimento;
- Verificar a eficácia e o perfil hematológico, bioquímico e histopatológico dos
diferentes tratamentos com nanossistemas;
- Avaliar vias de estresse oxidativo e parâmetros inflamatórios (PCR, IL-1B, IL-6, IL-
ABIDI, S. & BHASKARA, S. M. From chlorpromazine to clozapine-antipsychotic adverse
effects and the clinician's dilemma. Canadian Journal of Psychiatry, v. 48, p. 749-55, 2003.
AGOSTINHO, F. R. et al. Effects of chronic haloperidol and/or clozapine on oxidative stress
parameters in rat brain. Neurochemistry Research, v.32, p. 1343-50, 2007.
ALLÉMANN, E.; GURNY, R. & DOELKER, E. Drug loaded nanoparticles - preparation
methods and in vivo studies. European Journal of Pharmaceutics and Biopharmaceutics,
v. 39, p. 173, 1993.
ALVIR, J. M. et al. Clozapine-induced agranulocytosis: incidence and risk factors in the
United States. The New England Journal of Medicine, v. 329, p. 162-7, 1993.
ATKIN, K. et al. Neutropenia and agranulocytosis in patients receiving clozapine in the UK
and Ireland. The British Journal of Psychiatry, v. 169, p. 483-8, 1996.
BARREIROS, A. L. B. & DAVID, J. M. Estresse oxidativo: relação entre geração de espécies
reativas e defesa do organismo. Química Nova, v. 29, p.113-23, 2006
BAZILE, D. C.et al. PEG–PLA nanoparticles avoid uptake by the mononuclear phagocyte
system, Journal of Pharmaceutical Sciences, v. 84, p. 493-8, 1995.
BELLÓ, A. Dano oxidativo e regulação biológica pelos radicais livres. In: Marroni, N. P. et
al. Estresse Oxidativo e Antioxidantes. Porto Alegre: Editora Ulbra, 2002.
BENVEGNÚ, D. M. et al. Haloperidol-loaded polysorbate-coated polymeric nanocapsules
increase its efficacy in the antipsychotic treatment in rats. European Journal of
Pharmaceutics and Biopharmaceutics, v.77, p. 332–36, 2011.
BENVEGNÚ, D. M. et al. Haloperidol-loaded polysorbate-coated polymeric nanocapsules
decrease adverse motor side effects and oxidative stress markers in rats. Neurochemistry
International, v. 61, p. 623–31, 2012.
BERGEMANN et al. High clozapine concentrations in leukocytes in a patient who developed
leukocytopenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry, v. 31,
p. 1068-71, 2007.
BERNARDI, A. et al. Effects of indomethacin-loaded nanocapsules in experimental models
of inflammation in rats. British Journal of Pharmacology, v. 158, p. 1104-11, 2009.
BIANCHI, M. L. P. & ANTUNES, L. M. G. Radicais livres e os principais antioxidantes da
dieta. Revista de Nutrição, v. 12, p.123-30, 1999.
BIESALSKI, H. K. Free radical theory of aging. Current Opinion in Clinical Nutrition and
Metabolic Care, v. 5, n. 1, p. 5-10, 2002.
BRENNER, H. D. et al. Defining treatment refractoriness in schizophrenia. Schizophrenia
Bulletin, vol. 16, p. 551-61, 1990.
BUUR-RASMUSSEN, B. & BROSEN, K. Cytochrome P450 and therapeutic drug
monitoring with respect to clozapine. European Neuropsychopharmacology, v. 9, p. 453-9,
1999.
BURNS, M. J. The pharmacology and toxicology of atypical antipsychotic agents. Clinical
Toxicology, v. 39 supl. 1, p. 1-14, 2001.
CALVO, P. B. et al. Long-circulating PEGylated polycyanoacrylate nanoparticles as new
drug carrier for brain delivery. Pharmaceutical Research, v. 18, p. 1157-66, 2001.
CHAKRAVARTHI, S. S. et al. Comparison of anti-tumor efficacy of paclitaxel delivered in
nano- and microparticles. International Journal of Pharmaceutics, v. 383, p. 33-44, 2010.
CLEGHORN, J. M. et al. Neurolépticos efeitos de drogas sobre a função cognitiva na
esquizofrenia. Schizophrenia Research, v. 3, p. 211-19, 1990.
COUVREUR, P.; FATTAL, E. & ANDREMONT, A. Liposomes and nanoparticles in the
treatment of intracellular bacterial infections. Pharmaceutical Research, v. 8, n. 9, p. 1079-
1086, 1991.
CROW, T. J. The two syndrome concept: origins and current status. Schizophrenia Bulletin,
v. 11, p. 471-86, 1985.
DASH, M. et al. Chitosan—A versatile semi-synthetic polymer in biomedical applications.
Progress in Polymer Science, v. 36, p. 981-1014, 2011.
DASKALAKIS, Z. J. & GEORGE, T. P. Clozapine, GABA(B), and the treatment of resistant
schizophrenia. Clinical Pharmacology Therapeutics, v. 86, p. 442-6, 2009.
DIETRICH-MUSZALKA, A. et al. Oxidative/nitrative modifications of plasma proteins and
thiols from patients with schizophrenia. Neuropsichobiology, v. 59, p.1-7, 2009.
DIETRICH-MUSZALKA, A. et al. The oxidative stress may be induced by the elevated
homocysteine in schizophrenic patients. Neurochemistry Research, v. 37, p.1057-62, 2012.
DIETRICH-MUSZALKA, A. & OLAS, B. Isoprostenes as indicators of oxidative stress in
schizophrenia. The World Journal of Biology Psychiatry, v. 10, p. 27-33, 2009.
DIETRICH-MUSZALSKA, A.; OLAS, B. & RABE-JABLONSKA, J. Oxidative stress in
blood platelets from schizophrenic patients. Platelets, v. 16, p. 386–91, 2005.
DUTT, A. et al. Effectiveness of clozapine: A study from North India. Asian Journal of
Psychiatry, v. 3, p. 16-9, 2010.
ELKIS, H. & MELTZER, H. Y. Esquizofrenia refratária. Revista Brasileira de Psiquiatria,
v. 29, supl. II, p.S41-7, 2007.
ESSOCK, S. M. et al. Clozapine eligibility among state hospital patients. Schizophrenia
Bulletin, v. 22, p. 15-25, 1996.
FACTOR, S. A. Pharmacology of atypical antipsychotics. Clinical Neuropharmacology, v.
25, p. 153-7, 2002.
FALKAI, P. et al., Diretrizes da Federação Mundial das Sociedades de Psiquiatria Biológica
para o Tratamento Biológico da Esquizofrenia. Parte 1: Tratamento agudo. Revista de
Psiquiatria Clínica, v. 33, supl. 1, p. 7-64, 2006.
FEHSEL, K. et al. Clozapine induces oxidative stress and proapoptotic gene expression in
neutrophils of schizophrenic patients. Journal of Clinical Psychopharmacology, v. 25, p.
419-26, 2005.
FELT, O.; BURI, P. & GURNY, R. Chitosan: a uniquepolysaccharide for drug delivery.
Drug Delivery and Indutrial Pharmacy, v. 24, n. 11, p.979-93, 1998.
FLEISCHHACKER, W.W. Second generation antipsychotics. Psychopharmacology, v. 162,
p. 90-1, 2002.
GASZNER, P. & MAKKOS, Z. Clozapine Maintenance Therapy in Schizophrenia. Progress
in Neuro-Psychopharmacology & Biological Psychiatry, v. 28, p. 465-69, 2004.
GASZNER, P.; MAKKOS, Z. & KOSZA, P. Agranulocytosis during clozapine therapy.
Progress in Neuro-Psychopharmacology & Biological Psychiatry, v. 26, p. 603-7, 2002.
GILLHAM, B.; PAPACHRISTODOULOU, D. K. & THOMAS, J. H. The Endocrine
Tissues. Biochemical Basis of Medicine, p. 255-78, 1997.
GREF, R. Y. et al. Biodegradable long-circulating polymeric nanospheres, Science, v. 263, p.
1600-03, 1994.
GUTTERIDGE, J. & HALLIWELL, B. Free radicals and antioxidants in the year 2000: a
historical look to the future. Annals of the New York Academy of Sciences, v. 899, supl. 1,
p. 136-147, 2000.
HÄFNER, H. & VAN DER HEIDEN, W. Course and outcome of schizophrenia. In:
HIRSCH, S. R. & WEINBERGER, D. R. (eds.). Schizophrenia. Blackwell Science, Oxford,
Victoria, Berlin, 2003. p. 101-41.
HALLIWELL, B. Reactive Oxygen Species in Living Systems: Source, Biochemistry, and
Role in Human Disease. The American Journal of Medicine, v. 91, p. 14-22, 1991.
HALLIWELL, B. Oxidative stress and neurodegeneration: where are we now? Journal of
Neurochemistry, v. 97, p. 1634-58, 2006.
HALLIWELL, B. Free radicals and antioxidants – quo vadis? Trends in Pharmacological
Sciences, v. 32, n. 3, p. 125-30, 2011.
HALLIWELL, B. Free radicals and antioxidants: updating a personal view. Nutrition
Reviews, v. 70, supl. 5, p. 257-65, 2012a.
HALLIWELL, B. The antioxidant paradox: less paradoxical now? British Journal of
Clinical Pharmacology, v. 75, n.3, p. 637-44, 2012b.
HALLIWELL, B. & GUTTERIDGE, M. Free Radicals in Biology and Medicine. 3. ed.
New York: Oxford University Press, 2007.
HANS, M. L. & LOWMAN, A. M. Biodegradable nanoparticles for drug delivery and
targeting. Current Opinion in Solid State and Materials Sciences, v. 6, p. 319-27, 2002.
HENNA, N. J. Esquizofrenia refratária a tratamento antipsicótico: caracterização clínica e
fatores preditivos [Dissertação de mestrado]. São Paulo: Faculdade de Medicina da
Universidade de São Paulo, 1999.
HUMMER, M. et al. Hepatotoxicity of clozapine. Journal of Clinical
Psychopharmacology, v. 17, p. 314-7, 1997.
IQBAL, M. M. et al. Clozapine: a clinical review of adverse effects and management. Annals
of Clinical Psychiatry, v. 15, p. 33–48, 2003.
ISHAK, R. A. H. et al. A comparative study of chitosan shielding effect on nano-carriers
hydrophilicity and biodistribution. Carbohydrate Polymers, v. 94, p.669-76, 2013.
JANN, M. W. Clozapine. Pharmacotherapy, v. 11, supl. 3, p. 179-95, 1991.
JUNQUEIRA, V. B. C. & RAMOS, L. R. Estresse Oxidativo. In: Ramos, L. R. & Neto, J. T.
Geriatria e Gerontologia. Barueri: Manole Ltda, 2005.
KANE, J. M. Addressing nonresponse in schizophrenia. The Journal of ClinicalPsychiatry,
v. 73, p. 07, 2012.
LA GRENADE, L.; GRAHAM, D. & TRONTELL, A. Myocarditis and cardiomyopathy
associated with clozapine use in the United States. The New England Journal of Medicine,
v. 345, p. 224-5, 2001.
LAMBERTENGHI, G. Blood dyscrasias in clozapinetreated patients in Italy.
Haematologica, v. 85, p. 233-7, 2000.
LANDSIEDEL, R. et al. Genotoxicity investigations on nanomaterials: methods, preparation
and characterization of test material, potential artifacts and limitations – many questions,
some answers. Mutation Research, v. 681, p. 241-58, 2009.
LEHMAN, A. F. et al. American Psychiatry Association; Steering Committee on Practice
Guidelines. Practice guideline for the treatment of patients with schizophrenia, second edition.
American Journal of Psychiatry, v. 161, supl. 2, p. 1-56, 2004.
LEITÃO-AZEVEDO, C. L. et al. Sobrepeso e obesidade em pacientes esquizofrênicos em
uso de clozapina comparado ao uso de outros antipsicóticos. Revista Psiquiatria, v. 28, supl.
2, p. 12-8, 2006.
LEITÃO-AZEVEDO, C. L. et al. Ganho de peso e alterações metabólicas em esquizofrenia.
Revista de Psiquiatria Clínica, v. 34, supl. 2, p. 184-8, 2007.
LI, H. C. et al. Imbalanced free radicals and antioxidant defense systems in schizophrenia: a
comparative study. Journal of Zheijang University Science B, v. 12, p. 981–86, 2006.
LOUZÃ NETO, M. R. Esquizofrenia. In: Louzã Neto, M. R.; Motta, T.; Wang, Y.; Elkis,
H. (orgs.). Psiquiatria Básica. Porto alegre: Artes Médicas, 1995. p. 167-204.
MANFREDINI, V. et al. Blood antioxidant parameters in Sickle Cell Anaemia Patients in
Steady State. Journal of the National Medical Association, v. 100, p. 897-902, 2008.
MANFREDINI, V. et al. Simvastatin Treatment Prevents Oxidative Damage to DNA in
Whole Blood Leukocytes of Dyslipidemic Type 2 Diabetic Patients. Cell Biochemistry and
Function, v. 28, p. 360-6, 2010.
MANJUNATH, K. & VENKATESWARLU, V. Pharmacokinetics, tissue distribution and
bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal
administration. Journal of Controlled Release, v. 107, p. 215-28, 2005.
MANU, P. et al. When can patients with potentially life-threatening adverse effects be
rechallenged with clozapine? A systematic review of the published literature. Schizophrenia
Research, v. 134, p. 180-6, 2012.
MARDER, S. R. et al. Physical health monitoring of patients with schizophrenia. American
Journal of Psychiatry, v. 161, supl. 8, p. 1334-49, 2004.
MARENCO, S. & WEINBERGER, D.R. The neurodevelopmental hypothesis of
schizophrenia: Following a trail of evidence from cradle to grave. Development and
Psychopathology, v. 12, p. 501-27, 2000.
MASHHADIZADEH, M. H. & AFSHAR, E. Electrochemical investigation of clozapine at
TiO2 nanoparticles modified carbon paste electrode and simultaneous adsorptive voltammetric
determination of two antipsychotic drugs. Electrochimica Acta,v. 87, p. 816-23, 2013.
MCILWAIN, M. E. et al. Pharmacotherapy for treatment-resistant Schizophrenia.
Neuropsychiatric Disease and Treatment, v. 7, p. 135-49, 2011.
MELTZER, H. Y. Defining treatment refractoriness in schizophrenia. Schizophrenia
Bulletin, v. 16, supl. 4, p. 563-5, 1990.
MELTZER, H. Y. What's Atypical About Atypical Antipsychotic Drugs? Current Opinion
in Pharmacology, v. 4, p. 53-7, 2004.
MELTZER, H. & KOSTACOGLU, A. Treatment-resistant schizophrenia. In: LIEBERMAN,
J. & MURRAY, R. (eds.). Comprehensive care of schizophrenia: a textbook of clinical
management. London: Martin Dunitz, 2001. p. 181-203.
MILLER, A. L. et al. The Texas Medication Algorithm Project antipsychotic algorithm for
schizophrenia: 2003 update. Journal of ClinicalPsychiatry, v. 65, supl. 4, p. 500-8, 2004.
MÖLLER, H.J. Definition, psychopharmacological basis and clinical evaluation of
novel/atypical neuroleptics: Methodological issues and clinical consequences. World Journal
of Biological Psychiatry, v. 1, p. 75-91, 2000a.
MÖLLER, H.J. State of the art of drug treatment of schizophrenia and the future position of
the novel/atypical antipsychotics. World Journal of Biological Psychiatry, v. 1, p. 204-14,
2000b.
MONAGHAN, P.; METCALFE, N. B.; TORRES, R. Oxidative stress as a mediator of life
history trade-offs: mechanisms, measurements and interpretation. Ecology Letters Journal,
v.12, p. 75-92, 2009.
MOSQUEIRA, V. C. F. et al. Relationship between complement activation, cellular uptake
and surface physicochemical aspects of novel PEG-modified nanocapsules. Biomaterials, v.
22, p. 2967-79, 2001.
MUTHU, M. S. et al. PLGA nanoparticle formulations of risperidone: preparation and
neuropharmacological evaluation. Nanomedicine, v. 5, p. 323-33, 2009.
NEVES, M. C. et al. Hepatotoxicidade grave secundária a psicofármacos e indicação de
eletroconvulsoterapia a paciente com esquizofrenia. Jornal Brasileiro de Psiquiatria, v. 55,
supl. 1, p. 74-7, 2006.
NEWCOMER, J. W. Second-generation (atypical) antipsychotics and metabolic effects: a
comprehensive literature review. CNS Drugs, v. 19, supl. 1, p. 1-93, 2005.
NIKI, E. Assessment of Antioxidant Capacity in vitro and in vivo. Free Radical Biology &
Medicine, v.49, p.503-15, 2010.
NUNES, E. A. et al. Clozapine treatment of patients with refractory schizophrenia, concurrent
dengue infection and hematological abnormalities: three case reports. Therapeutic Advances
in Psychopharmacology, v. 3, p. 83-8, 2013.
PEUSKENS, J. The evolving definition of treatment resistance. Journal of Clinical
Psychiatry, v. 60, supl. 12, p. 4-8, 1999.
POLYDORO, M. et al. Haloperidol- and clozapine-induced oxidative stress in the rat brain.
Pharmacology Biochemistry and Behavior, v. 78, p. 751-6, 2004.
PONS et al. Clozapine and agranulocytosis in Spain: Do we have a safer population? A 5-year
haematologic follow-up. Revista de Psiquiatría y Salud Mental, v. 5, supl. 1, p. 37-42,
2012.
RAMÍREZ, J. J. C. et al., Miocarditis por clozapina: reporte de caso y revisión de tema.
Revista Colombiana de Psiquiatria, v. 40, n. 1, p. 170-82, 2011
RAY, P.; HUANG, B. W. & TSUJI, Y. Reactive oxygen species (ROS) homeostasis and
redox regulation in cellular signaling. Celullar Signalling, v.24, p.981-90, 2012.
REDDY, R. D. & YAO, J. K. Free radical pathology in schizophrenia: a review.
Prostaglandins Leukot Essent Fatty Acids, v. 55, p.33–4, 1996.
REINKE, A. et al. Haloperidol and clozapine, but not olanzapine, induces oxidative stress in
rat brain. Neuroscience Letters, v. 372, p. 157-60, 2004.
RIBAS, G. S. et al. Reduction of lipid and protein damage in patients with disorders of
propionate metabolism under treatment: a possible protective role of L-carnitine
supplementation. International Journal of Developmental Neuroscience, v. 28, p. 127-32,
2010.
RIEUX, A. et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a
mechanistic approach. Journal of Controlled Release, v. 116, p. 1–27, 2006.
RONALDSON, K. J. et al. Clinical course and analysis of ten fatal cases of clozapine-induced
myocarditis and comparison with 66 surviving cases. Schizophrenia Research, v. 128, p.
161-5, 2011.
SANDERS-BUSH, E. & HAZELWOOD, L. 5-Hidroxitriptamina (serotonina) e dopamine.
In: BRUNTON, L. L.; CHABNER, B. A.; KNOLLMANN, B. C. (orgs.). As Bases
Farmacológicas da Terapêutica de Goodman & Gilman. Editora: McGraw Hill e Artmed,
2012. p. 334-61.
SCHAFER, F. Q. & BUETTNER, G. R. Redox environment of the cell as viewed through the
redox state of the glutathione disulfide/glutathione couple. Free Radical Biology &
Medicine, v. 30, p. 1191-212, 2001.
SCHAFFAZICK, S. R. et al. Caracterizacão e estabilidade físico-química de sistemas
poliméricos nanoparticulados para administração de fármacos. Química Nova, v. 26, p.726-
37, 2003.
SIES, H. Strategies of antioxidant defense. European Journal of Biochemistry, v.215,
p.213-9, 1993.
SINGH, N. et al. Nanogenotoxicology: the DNA damaging potential of engineered
nanomaterials. Biomaterials, v. 30, p. 3891–914, 2009.
SOPPIMATH, K. S. et al. Biodegradable polymeric nanoparticles as drug delivery devices.
Journal of Controlled Release, v. 70, p. 1-20, 2001.
TANDON, R.; CARPENTER, W. & DAVIS, J. First- and second-generation antipsychotics:
learning from CUtLASS and CATIE. Archives of General Psychiatry, v. 64, p. 977-78,
2007.
VENKATESWARLU, V. & MANJUNATH, K. Preparation, characterization and in vitro
release kinetics of clozapine solid lipid nanoparticles. Journal of Controlled Release, v. 95,
p. 627-38, 2004.
WARNER, B. et al. Clozapine and sudden death (letter). Lancet, v. 355, p. 842, 2000.
WHO. World Health Organization. What's schizophrenia? Disponível em:
<http://www.who.int/mental_health/management/schizophrenia/en/>. Acessado em: 10 de
Novembro de 2013.
WULFF, C. M. Clozapina, neutropenia y test de prednisona. Revista Chilena de Neuro-
Psiquiatría, v. 45, supl. 2, p. 114-9, 2007.
YAO, J. K. et al. Reduced status of plasma total antioxidant capacity in schizophrenia.
Schizophrenia Research, v.32, p. 1–8, 1998.
ANEXO A - Protocolo de aprovação do projeto pelo CEUA-UNIPAMPA
Source: http://cursos.unipampa.edu.br/cursos/ppgbioq/files/2012/04/EFEITO-DO-TRATAMENTO-COM-NANOC%C3%81PSULAS-POLIM%C3%89RICAS-CONTENDO-CLOZAPINA-SOBRE-PAR%C3%82METROS-DE-ESTRESSE-OXIDATIVO-EM-RATOS-WISTAR-Disserta%C3%A7%C3%A3o.pdf
Dandruff Dandruff is the shedding of dead skin cells from the scalp. As skin cells die, a small amount of flaking is normal; about 487,000 cells/cm2 get released normally after detergent treatment. Some people, however, experience an unusually large amount of flaking either chronically or as a result of certain triggers, up to 800,000 cells/cm2, which can also be accompanied by redness and irritation.
Contents lists available at Hormones and Behavior Consequences of acute stress and cortisol manipulation on the physiology, behavior,and reproductive outcome of female Pacific salmon on spawning grounds Sarah H. McConnachie ,, Katrina V. Cook , David A. Patterson , Kathleen M. Gilmour , Scott G. Hinch Anthony P. Farrell , Steven J. Cooke a Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6b Fraser Environmental Watch Program, Fisheries and Oceans Canada, Pacific Region, Science Branch, Cooperative Resource Management Institute,School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6c Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5d Department of Forest Sciences and Institute of Resources, Environment and Sustainability, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4e Department of Zoology and Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4f Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6